Dairy Herd Health and Management
A guide for veterinarians and dairy professionals
By Jos Noordhuizen
Edited by Helen Warren

About the author

Jos Noordhuizen was born on April 9th, 1947 in the Netherlands. He got his DVM diploma from Utrecht Veterinary Faculty in January 1975, after which he was appointed for 3 years in the Clinic of Obstetrics & Gynaecology of that Faculty, where he practiced Herd Fertility Schemes on dairy farms. After having spent some time in private food animal practice, he went back to Utrecht where he got his PhD on the subject Herd Health & Production Management on Dairy Farms in 1984.

In 1988 he was appointed professor in animal husbandry at the Wageningen Agricultural University. Later In 1997 he was invited for the chair of professor in ruminant health at the Utrecht Faculty where he stayed until 2005. He was guest professor in veterinary schools in Gent (Belgium), Nantes (France) and Lyon (France).

He is currently adjoint professor at Charles Sturt University, School of Animal & Veterinary Science (Australia) and consultant at VACQA-international (Portugal).

He has supervised over 35 PhD projects, published over 300 papers in scientific and practice journals, edited 4 books on various veterinary and dairy farming topics, organized several international courses, was invited for giving seminars all over the world, and participated in joint development projects in Costa Rica, Thailand, Vietnam and Sweden.

Jos was member of the Dutch National Health Council, appointed by HM The Queen, member of the scientific committee for health and welfare of the European Commission in Brussels, founder and president of the Dutch Association for Veterinary Epidemiology & Economics, cofounder of the European College of Bovine Health Management, and member of several international associations and congress organisation committees. He currently lives with his wife in Normandy (France).
About the Book
This publication takes a new approach to the subject of Dairy Herd Health and Management. The author’s 35 plus years experience in the area has lead to the conceptualisation and collection of different topics to better support dairy herd health and management programmes.

About Context
Context is a specialist publisher based in England producing targeted practical technical publications. Our expertise allows us to plan, design and produce publications that are colourful and easy to read yet providing you with the essential information you need quickly. We can also offer versions in different languages if required.
<table>
<thead>
<tr>
<th>Sections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Herd Health And Productivity Management</td>
</tr>
<tr>
<td>2. Biosecurity</td>
</tr>
<tr>
<td>3. Calf rearing</td>
</tr>
<tr>
<td>4. Claws</td>
</tr>
<tr>
<td>5. Climate in barns</td>
</tr>
<tr>
<td>6. Cow Comfort</td>
</tr>
<tr>
<td>7. Disease</td>
</tr>
<tr>
<td>8. Economics</td>
</tr>
<tr>
<td>9. Feed & Feeding Management</td>
</tr>
<tr>
<td>10. Housing</td>
</tr>
<tr>
<td>11. Hygiene</td>
</tr>
<tr>
<td>12. Management</td>
</tr>
<tr>
<td>13. Mastitis</td>
</tr>
<tr>
<td>14. Milking practise</td>
</tr>
<tr>
<td>15. Production</td>
</tr>
<tr>
<td>16. Quality</td>
</tr>
<tr>
<td>17. Reproduction</td>
</tr>
<tr>
<td>18. Robotic milking</td>
</tr>
<tr>
<td>19. Sustainability</td>
</tr>
<tr>
<td>20. Values of reference</td>
</tr>
<tr>
<td>21. Veterinary public health</td>
</tr>
<tr>
<td>22. Water</td>
</tr>
<tr>
<td>23. Worksheets</td>
</tr>
</tbody>
</table>
Herd health and productivity management
Herd health and productivity management (HHPM) has become a core business of modern veterinary practices in developed countries. The unit of concern is the herd as opposed to the sick cow. This is because the farmer earns his income through healthy cows and loses money via sick cows. HHPM comprises the various, most important farming areas. For each area, a basic monitoring protocol exists. However, at the same time, individual area specificities should be taken into account. This chapter provides various practical methods used to detect strong points and points for improvement, organise a farm visit and interpret farm performance. Problem analysis requires a different type of protocol, where a stepwise procedure helps the farmer to understand where he stands in relation to average benchmarks and other units. Performance parameters are always compared with reference values.
Transition period score sheet

Adapted from GD Deventer NL 2008

Table 1.3 General score sheet to assess the level of disease resistance in cows during the transition period

<table>
<thead>
<tr>
<th>Farmer name</th>
<th>Name of veterinarian</th>
<th>Date of visit</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrition</td>
<td>The average BCS of dry cows is > 3.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A significant decrease in dry matter consumption by dry cows is observed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Early lactation</td>
<td>Loss of >1 BCS point in the first 6 weeks after calving</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rumen Fill score after calving is < 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minerals, Vitamins</td>
<td>Dry cows and/or heifers receive a total mixed ration (TMR)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Score

<table>
<thead>
<tr>
<th>Stress factors</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Most calvings take place isolated and outside the herd (score 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forage component at the end of the dry period or the day of calving differs by > 50% of the forage type in early lactation (e.g. low energy/high fibre versus high energy + fibre)(score 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>At the end of the dry period, the cow has not been adapted to at least 2 kg of concentrates (score 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The neonate calf is not separated from its dam within 6 hrs of birth (score 2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are too few cubicles for all cows in the herd (score 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There is not enough space at the feed table (score 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>There are cow comfort problems on this dairy farm (score 4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Herd health</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalence of infectious diseases is rather high (> 15% of cows in the herd are affected</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prevalence of other disorders (e.g. mastitis, lameness, metabolic disorders) is rather high (> 15% of cows in the herd)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

If “YES” has been entered under one or more of the given situations above, this can be indicative of a reduction in disease resistance. In this case, a more in-depth analysis should be carried out to try to find the cause(s) of this reduction.

A score of **6 or higher under ‘Stress factors’** indicates reduced **disease resistance**.

High prevalence of the diseases and disorders noted above can indicate a lowered disease resistance in the herd.
Key factors for large dairy farms

From Dossier Grands Tropeau. December 2007
L’Eleveur Laitier, # 153. Jean-Luc Ménard

Factor 1 - Buildings
- Barn/shed climate = ventilation without obstacles
- Ventilated walls or half-open walls are okay
- Side doors standing open is rather bad for optimal ventilation
- Mobile wall sections over the whole length are fine for flexibility

The milking parlour can be placed:
1. Parallel to the cow houses
2. Perpendicular to cow houses
3. At the end of the cow house

Waiting area
1.2 m² /cowL = 12 m² / 10 cow
When cows enter in different, subsequent, smaller groups 6 m² / 10 cow are only needed for the waiting area.
Provide one calving pen / 20 cows (when calvings are concentrated).

Cubicle size
To calculate the correct cubicle size, use the largest 30% of the herd or group as a guideline.
Size needed at the shoulder rail = 0.5 m width /cow
Size needed at the feed table = 0.75 m width / cow

Feed bunk for ad lib consumption
1 place / 2 - 3 cows
Push the forage to the cows or use a mobile feed table.

Factor 2 - Specialisation tasks for animal groups on the farm
- Cows - dry
- Cows - in lactation
- Heifers
- Calves
- Combinations of the preceding

Organisation & specialisation of tasks
Herd divided in groups:
- 2 x lactation
- 1 x dry group
(at least part of the year)

Factor 3 - Cow Comfort
- Straw yard
- Cubicles+matress
- Combinations

Workload and -time
(Cows forced to pass crossings need time)
Availability of straw
Cow circulation & traffic
Risk of mastitis
Introduction
Infectious diseases can have a great impact on the economic performance of a farm and may also induce stress in the farmer. Examples of such diseases are: salmonellosis, BVD, IBR, brucellosis, tuberculosis, paratuberculosis (Johne’s disease). As well as animal and farmer welfare, these diseases have wider implications for the overall standing and image of the dairy industry, including damage to public image, loss of market position and decreased slaughter value. Moreover, in the EU the farmers are held responsible for the products (milk; meat) they put on the market, including the safety of those products. Hence, they are held responsible for any sort contamination (microbiological; chemical etc).

The production process influences the health and welfare of the cattle in the herd, as well as public health. After all, the farmers represent the first link in the dairy food chain! The negative effects of infectious diseases can have implications for both the short- and long–term and depend on, for example, the type of disease/pathogen, the level of commitment by farmers to address these diseases/pathogens and the concerns of consumers.

Given the important consequences of infectious diseases, the development and implementation of biosecurity programmes should be a high priority among farmers.

Vaccines and antibiotics have been the number 1 choice to prevent, control or reduce the incidence of infectious diseases. However, for certain diseases, they are unavailable or are not sufficiently effective; sometimes, if available, they are poorly administered. In other situations there is limited option for using vaccines (e.g. the EU).

For poorly administered vaccines, one can develop technical working instructions (a kind of ‘best practice’) including the correct procedure for administering medicinal drugs, as well as correct stock handling, dosage, withdrawal time, etc. Such working instructions must be strictly complied with. Even instructions for the correct use of antibiotics must be strictly adhered to in order to prevent contamination of milk or meat and to minimise resistance development and residues. It is important to remember that vaccines and antibiotics do not replace good biosecurity, even when required for reducing the prevalence of a certain disease (eg. BVD; IBR).

Components of a biosecurity programme
The components of a biosecurity programme are management instruments (Good Dairy Farming Code of Practice). Some of the areas of concern and relevance for veterinarians are listed in Table 2.1

How to design a biosecurity programme
There are five steps to take when designing a biosecurity programme for use on farm:

1. Conduct a written, critical inventory of infectious diseases that are relevant to the farm. Take into account the geography, soil type, housing, animals, people and visitors, transportation means.
2. With the farmer, identify the most important infectious diseases already present in the herd.
3. Identify the most important infectious diseases that are not yet present on the farm but present a threat.
4. Conduct a Diagnostic Herd Evaluation (animals, environment, data) to determine the level of risk for the transmission of selected disease pathogens. Formulate goals for the biosecurity programme: for example a 5% reduction in the prevailing clinical mastitis incidence per year; or, the elimination of IBR from the dairy herd in 3 years.
5. Illustrate the biosecurity programme and implement it. Work together with the other people working on/for the farm, including professional consultants to try to ensure compliance. The programme must be updated at least annually.

Biosecurity = a programme to reduce or prevent the introduction from external sources of infectious diseases, as well as the spread of such diseases once they have entered the farm.
Areas of concern

Table 2.1 Areas of concern & relevance to veterinarians involved in a dairy farm biosecurity programme

<table>
<thead>
<tr>
<th>New additions</th>
<th>Cattle, semen, embryos</th>
<th>Check all animals. Test for relevant diseases. Sample milk for bacteriological testing. Vaccinate twice before transportation. Quarantine the animal for 3 weeks before mixing with the herd. Buy semen or embryos or sires from certified traders or with active disease control programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Note that e.g. Neospora and BVD can be introduced by healthy animals. Moreover, healthy animals can introduce diseases with a long incubation period (paratuberculosis).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forages and concentrates; water</td>
<td>Concentrates Salmonella spp. can be found in feedstuffs and in pasture. Forages Salmonella spp. can be found in forages irrigated with contaminated water. Incorrect harvest or feed stocking may introduce clostridium bacteria. Water Water sources can be contaminated and introduce E. coli or Salmonella spp., as well as Cryptosporidium parvum. Test water for bacteriological, chemical and nutritive contamination. Ask cattle and feed traders to show the quality assurance for their feeding programme, their stock and their delivery. Prevent faecal and urinary contamination of feedstuffs and water.</td>
<td></td>
</tr>
<tr>
<td>Contact between animals</td>
<td>Fences, shows and expositions, errant animals, putting sick animals in the barn, calving pen. Contact between groups of different ages. Minimise contact between different animal groups. Consider cattle returning from shows or markets as new additions (see above). Minimise contact with non-resident cattle.</td>
<td></td>
</tr>
<tr>
<td>Wildlife and other vectors</td>
<td>Squirrels, rats, mice, foxes Salmonella, Brucella, Leptospires. Insects Anaplasmosis, Blue Tongue Rats, mice Salmonella, E.coli Prevent contact with wildlife. Use pesticides and traps close to feed. Exercise control measures for insects and birds, on and around animals.</td>
<td></td>
</tr>
<tr>
<td>Animal health management</td>
<td>Procedures -Comply to the Good Medicine Application Code of Practice Note that practices like de-horning, vaccination and implanting could cause disease transmission. Use disposable utensils. Disinfect other utensils between use on different animals. Use vaccines according to prescription.</td>
<td></td>
</tr>
<tr>
<td>Noxae</td>
<td>Vehicles, persons Wash trucks and vehicles after use. Dedicate a special site for dead cattle. Provide strict hygiene instructions for visitors.</td>
<td></td>
</tr>
</tbody>
</table>
Biosecurity checklist

Table 2.5 Biosecurity checklist for farms

<table>
<thead>
<tr>
<th>Section 1</th>
<th>General issues FARMER STATEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Best management practices checklist</td>
<td>YES</td>
</tr>
<tr>
<td>I routinely meet milk quality standards (SCC, bacteria, etc)</td>
<td></td>
</tr>
<tr>
<td>My milk and dairy beef buyers offer quality premiums</td>
<td></td>
</tr>
<tr>
<td>I believe it is more profitable to keep diseases off my dairy than to fight them on my dairy</td>
<td></td>
</tr>
<tr>
<td>I agree that taking profit by doing things right the first time is a critical part of biosecurity</td>
<td></td>
</tr>
<tr>
<td>Biosecurity requires some method of permanent animal ID. I have such an ID method in place.</td>
<td></td>
</tr>
<tr>
<td>I can readily track and validate to others the quality represented in my animals</td>
<td></td>
</tr>
<tr>
<td>I have been able to consistently produce and sell more milk per cow per year</td>
<td></td>
</tr>
</tbody>
</table>

Section 2 | Keeping infectious diseases off the farm

General control practices

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I never purchase or keep animals for or from others</td>
<td></td>
</tr>
<tr>
<td>My vet talks to the seller’s vet prior to my buying animals</td>
<td></td>
</tr>
<tr>
<td>My cattle do not attend shows or use community pastures and they are not placed in performance evaluation centres</td>
<td></td>
</tr>
<tr>
<td>My cattle rarely share fence lines with neighbouring cattle</td>
<td></td>
</tr>
<tr>
<td>I purchase and never borrow or use loaner bulls from other farms</td>
<td></td>
</tr>
<tr>
<td>I always buy animals from a paratuberculosis-free certified farm</td>
<td></td>
</tr>
<tr>
<td>I always know the health status of animals brought into my herd</td>
<td></td>
</tr>
<tr>
<td>I never bring in animals without knowing their vaccination history</td>
<td></td>
</tr>
<tr>
<td>I do not buy animals from a herd that has mixed origin cattle</td>
<td></td>
</tr>
<tr>
<td>I limit my purchases to open heifers</td>
<td></td>
</tr>
<tr>
<td>I ask for DHIA somatic cell count information from the seller’s herd when buying cows</td>
<td></td>
</tr>
<tr>
<td>I transport animals in my own clean vehicle</td>
<td></td>
</tr>
</tbody>
</table>
Calf rearing
The rearing of young stock on a dairy farm can be considered as an individual business enterprise. This chapter addresses many issues of rearing. First attention is given to, particular events in specific rearing periods together with specific risks followed by checklists for evaluating rearing management quality. Also included are several protocols for IgG testing, checking calves for respiratory disease, diarrhoea and rehydration, as well as heart girth measurement, ration composition, housing of calves, proper dehorning, hygiene, BVD control, biosecurity and for estimating estimation of losses related to mortality.
Table 3.1 Potential risk factors in calves

<table>
<thead>
<tr>
<th>Disorders around birth</th>
<th>Potential risk factors identified from the literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bull calf – More muscular breed sire used – Posterior position at birth (milk fever in dam; severe stress; low vitality) – 1st parity</td>
<td></td>
</tr>
<tr>
<td>Inappropriate or lack anti-scours vaccination (resistant bacteria; GVP not applied) – Poor hygiene at calving (too many calving cows in the same pen; calves born on slatted floor; lack of attention from farmer; lack of time) – Poor housing hygiene (lack of attention from farmer) – Poor colostrum quality (unhygienic collection; low IgG level; unhygienic feeding; poor storage practices; using colostrum frozen more than 1 year ago; dilution with water; poor thawing practices) – Too long an interval between birth and the calf’s 1st meal – calf does not receive first colostrum milked– Insufficient quantity at each meal – Group housed too early (too little space; no individual pen) – Inside housing – No preventive antibiotics administered – No free-choice salt provided – additional teats are removed too early – Large herds – Too little attention from care-taker – Sudden changes in feeding practice – No routine monitoring visits by veterinarian – Heat stress in calves</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diarrhoea in 1st week of age</th>
<th>Use of maternity pen as sick pen – No individual calf hutches – Poor rearing hygiene practice (improper housing and feeding; damp bedding material) – Milk replacer fed without antimicrobials or the equivalent – Sick calves not isolated – Drinking water pH >8 – Roughage from pasture where manure was spread without ploughing in – Sudden changes in feeding or ration – lack of attention from care-taker</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infection in calf (navel disorder; diarrhoea; respiratory) – Feeding poor quality colostrum (see under diarrhoea in 1st week of age) or hay – Feeding poor quality milk replacer (inappropriate composition; poor quality water used at mixing; milk powder not stored dry; incorrect preparation or supply (temperature; poor mixing; dirty conditions; inappropriate feeding temperature) – Stressful calf-handling – poor water quality – Too much hay or grass given – Ad libitum milk replacer given (hampers intake of hay = poor rumen development = stress and susceptibility after weaning) – inappropriate concentrate composition – Feeding mastitic or antibiotic-contaminated milk – Stress/infection at dehorning (poor dehorning practice; incorrect timing of dehorning; stressful handling; too small headspace in feed rack) – Lack of concern of care-taker</td>
<td></td>
</tr>
<tr>
<td>Poor barn climate (temperature, humidity, draughts; not adapted to climatic changes) – Housing older calves with younger, or too many age groups mixed – Ammonia level in air too high – Lack of attention from care-taker – Season – Poor colostrum management – Poor record keeping – Animal stocking density too high – BVD infection present in herd – Poor bedding material quality – New cattle purchased – Grazing in summer – History of disease (diarrhoea; respiratory)</td>
<td></td>
</tr>
</tbody>
</table>
Claw trimming

Functional (preventive) claw trimming
Trimming should never be carried out in the month prior to calving.

However, cows may be trimmed on the day of drying off and then again at two to three months after calving (when they are through the high risk period and will more easily recover from any claw lesions).

A second option is to trim all cows twice a year (or more if needed), taking care not forget groups of animals, such as the pregnant maiden heifers.

With this option, ensure all cows are trimmed in one day or, at the most, over two consecutive days.

A third option would be to trim cows on an individual basis, for example, cows with highly sensitive claws.

Curative claw trimming
It is essential to trim claws of cows that show poor hind leg conformation, lameness or hoof deformities. Delaying trimming, in this situation, will exacerbate the situation and could result in problems with remaining claws, either by infection or by mechanical overload.

Claw trimming should only be carried out using the appropriate tools and facilities. There exist several simple claw trimming facility options:

- Mobile - these may be placed behind your car
- Installation in a cubicle
- Fully equipped, stand-alone devices that can be placed anywhere on farm.

The following gives an example of a list of animals selected for claw trimming, together with the reason for selection, as part of the routine Herd Diagnostic Evaluation during a farm visit:

<table>
<thead>
<tr>
<th>Cow ID</th>
<th>Reason for trimming</th>
</tr>
</thead>
<tbody>
<tr>
<td>5671</td>
<td>front claw deformation</td>
</tr>
<tr>
<td>5670</td>
<td>hind claw too long</td>
</tr>
<tr>
<td>3145</td>
<td>front claw show some deformity</td>
</tr>
<tr>
<td>1352</td>
<td>all 4 feet too high and too long</td>
</tr>
<tr>
<td>8330</td>
<td>overgrowing soles</td>
</tr>
<tr>
<td>1806</td>
<td>lesion on hind claws?</td>
</tr>
<tr>
<td>8340</td>
<td>lesions on hind claws?</td>
</tr>
<tr>
<td>8329</td>
<td>all 4 feet too high and too long</td>
</tr>
<tr>
<td>5648</td>
<td>front claws too long</td>
</tr>
<tr>
<td>5693</td>
<td>front claws too long</td>
</tr>
</tbody>
</table>

This list indicates a lack of good claw management, demonstrating the need for routine claw trimming and inspection i.e. a functional (preventative) trimming plan.
Farm visit protocol to address claw problems

1. On arrival, get a general impression regarding the farm and its installations.

2. Follow the rules of Good Hygiene Practice (change boots and clothes; wash hands).

3. Report to the farmer (or manager, employee, family).

4. Ask the farmer whether there are lameness problems in his herd of cows or calves.

5. If no, execute the Diagnostic Herd Evaluation routines (continue with step 8).

6. If yes, ask for the details about the lameness cases (clinical diagnoses; predominant diagnosis; current treatment practices; whether preventative functional claw trimming is carried out and, if so, what the protocol is e.g. twice a year by a professional trimmer) and whether the farmer carries out trimming; if yes, when, why and how. Once you have sufficient detail, then proceed with the rest of the anamnesis: breed of cow; average age of cows or calves; milk production level; reproductive problems (heats; pregnancy repeat breeders) calving problems; other diseases.

7. Ask for details regarding: use of a foot bath (dimensions; frequency; products; contents; renewal); presence of a water bath to clean claws first.

8. Clinical inspection of the animals (Notation= GOOD—AVERAGE—POOR)

9. Body condition scores at early, mid-, late lactation and dry cows; rumen fill scores; faecal consistency scores; undigested fibre in the faeces scores; locomotion scores; specific behaviour; poor posture of hind legs; social interactions, including agonistic and antagonistic behaviour; hock lesions; other signs.

Inspection of housing, climate, hygiene and rations (Notation= GOOD—AVERAGE—POOR).

Characteristics of the barn (temperature/ventilation; humidity; draughts; open sidewalls; dirt; moulds).

Characteristics of the waiting area, exercise area; milking parlour (presence of a working manure scraper [type of system; frequency of operation; efficacy]).

Characteristics of the rations (type of ration [complete or not]; feedstuffs; origin and quality; formulation of rations [by whom; ration limited or ad libitum]; risk of acidosis; conditions in front of the feed rack; position of feed rack).

General hygiene in the barns, the cubicles, the passage ways, waiting area, milking parlour. Cleanness of the cows (scoring thighs and udders).

10. Synthesis of the inspection = summarising strong points and points for improvement → work hypothesis and herd probability diagnosis. Or = summarise lameness problems, including prevailing risk factors.

11. Create a plan of action with advice and/or interventions for the short-term (maximum of five recommendations) and for the mid-to-long-term. Ensure you discuss the draft version of the report with the farmer before producing a final version. Deliver the final version (maximum of one page of A4) to the farmer within five days.

12. Produce a calendar indicating when the next farm visit is required to evaluate progress following the advice given in the preceding report.
Points for improvement

<table>
<thead>
<tr>
<th></th>
<th>Strong points</th>
<th>Points for improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal inspection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspection of barns, hygiene and rations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synthesis & conclusions (formulate your reasoning and hypothesis here)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advice & proposed Interventions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hint! The titles given in the above field sheet can be used as headings in the farm visit report!
Protocol No 1 for problem analysis of claw lesions

Concern(s) or question(s) from the farmer

ANAMNESIS = which cows, when, what, how, which conditions, where?

Confirmation of concern(s) or question(s):
- By farm data
- By claw trimmer
- By vet during farm visit

Concern(s) not justified
- Exit
- Look for other signs
- END
- None?

Concern(s) justified
- Inspection of herd
 (healthy cows = reference)
 - Inspection of affected cows
 - Inspection of barn, climate, etc
 - Check farm data
- Set working hypothesis
- Additional activities:
 - Nutrition
 - Barn hygiene
 - Barn climate
 - Traumas
 - Details of barns and climate

Plan of action

Diagnoses
- At individual level
- At herd level

Evaluations = subsequent visits to evaluate effects of recommendations, and efficacy of treatments. Formulation of other recommendations when deemed necessary. Written farm visit report of a maximum of three to five pages (Tables & Figures excluded).

Figure 4.3 Protocol 1 for analyzing herd claw problems
Eighty dairy farms, with either a loose housing system with straw yards or as tied stalls, were assessed for the prevalence of lameness. There was a large variation in lameness prevalence between the two systems.

Results

1. Farmers do not know the lameness risk factors very well.
2. The rate of lameness detection is abnormally low, 8% observed versus 27 to 34% in reality.
3. Treatments for lameness are either too late or non-existent.
4. The fact that herd claw trimming is rarely executed makes the situation worse.
5. The barn surfaces are not very well and there is a lack of cow comfort.
6. The steps (cubicles; drinking places) are too high (> 20 cm is bad) and sometimes there are even two steps.
7. There are traumatizing areas and or slippery areas in the houses.
8. The exercise areas are muddy and or full of gravel.
9. The lack of hygiene and the humidity provoke claw lesions.
10. The traumas on a hard wearing floor, and gravel are prone to cause phlegmonas.

Primary criteria for cattle welfare

1. The body posture of the cows.
2. The straightness of the spine of the cow, both while standing and while walking (locomotion score).
3. Treatments for lameness are either too late or non-existent.
4. Treatments for lameness are either too late or non-existent.

To ensure cow welfare better, a herd claw trimming routine must be implemented. Trimming frequency should be every four months. An alternative option is claw trimming twice yearly. Older cows and repeat cases must be trimmed more frequently. (Note that the current Dutch method of claw trimming is to trim the claws twice per year (routine functional trimming) and to trim each cow just before drying off, as well as after peak milk yield (after 100 days lactation). If necessary, older cows and chronic cases must be claw trimmed more often.

Table 6.1 14 key animal needs for cattle welfare

<table>
<thead>
<tr>
<th>Feed*</th>
<th>Health*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drinking water*</td>
<td>Reproduction</td>
</tr>
<tr>
<td>Respiration</td>
<td>Grooming*</td>
</tr>
<tr>
<td>Excretion</td>
<td>Locomotion*</td>
</tr>
<tr>
<td>Resting*</td>
<td>Orientation/ exploration</td>
</tr>
<tr>
<td>Safety*</td>
<td>Pain experiences</td>
</tr>
<tr>
<td>Thermoregulation</td>
<td>Social interactions*</td>
</tr>
</tbody>
</table>

* = 8 primary issues for assurance & control

Cattle health can be further optimised by knowledge of diseases that affect cattle. Preventing disease has become more important than curing disease and one key element in prevention is disease risk identification and management. Examples are given in this chapter and, although some diseases are addressed through checklists, this publication is not designed to be textbook on diseases.
Table 7.1 Rapid screening test for the level of resistance in cows during the transition period

<table>
<thead>
<tr>
<th>FARM:</th>
<th>Veterinarian:</th>
<th>DATE:</th>
<th>YES</th>
<th>NO</th>
</tr>
</thead>
</table>

Feed and feeding
- The average BCS of the dry cows is above 3.5
- Feed intake in dry cows dropped dramatically in late dry period

Early lactation
- Loss of BCS at six weeks after calving is > 1 unit
- Rumen Fill score after calving is < 3

Minerals & Vitamins
- Dry cows and pregnant heifers receive a standard premix

Potential stress factors
- Calvings occur in isolation outside the herd (yes = 4 points)
- At the end of the dry period or on the day of calving, forage quantity differs by more than 50% from that offered in lactation (yes = 2 points)
- At the end of dry period, the cows are still not adapted to at least two kg of concentrates (yes = 2 points)
- The calf is not separated from its dam in the first six hrs after birth (yes = 2 points)
- There are too few cubicles for all cows in the herd (yes = 6 points)
- There are too few places at the feed rack for all cows to eat (yes = 4 points)
- There is a lack of cow comfort in the herd (yes = 4 points)

Herd health
- High prevalence of infectious diseases
- High prevalence of endemic diseases (mastitis, lameness, etc)

> *a total score of points ≥ 6 indicates a lowered disease resistance in the cows.

The general health status of the herd (e.g. IBR, BVD, salmonellosis) may indicate whether such diseases specifically contribute to this lowered disease resistance.

If the answer to several of the above points has been ‘YES’ then this is indicative of a situation at relatively high risk for poor disease resistance.

In this situation, a more in-depth analysis is warranted to determine the cause(s).
Risk factors for abomasal displacement

<table>
<thead>
<tr>
<th>General information</th>
<th>Number of cows present in the herd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of cows per parity</td>
</tr>
<tr>
<td></td>
<td>Mal-adaptation of cows and heifers in the herd after calving (acifodid; low feed intake)</td>
</tr>
<tr>
<td></td>
<td>Level of milk production (in L, fat, protein)</td>
</tr>
<tr>
<td></td>
<td>Animals of parity 1</td>
</tr>
<tr>
<td>Housing</td>
<td>Type of barn</td>
</tr>
<tr>
<td></td>
<td>Type of cubicle and bedding</td>
</tr>
<tr>
<td></td>
<td>Type of exercise area</td>
</tr>
<tr>
<td>Nutrition</td>
<td>Quantity of maize silage/cow/day at calving</td>
</tr>
<tr>
<td></td>
<td>Quantity of grains/cow/day around calving</td>
</tr>
<tr>
<td></td>
<td>Quantity of hay (long particles) at calving</td>
</tr>
<tr>
<td></td>
<td>Quantity of fibre in the ration around calving</td>
</tr>
<tr>
<td></td>
<td>Ratio concentrates-to-forages too high</td>
</tr>
<tr>
<td></td>
<td>Proportion of grains in concentrates too high</td>
</tr>
<tr>
<td></td>
<td>Low level of feed intake around calving</td>
</tr>
<tr>
<td>Feeding management</td>
<td>Feeding system (conventional or TMR)</td>
</tr>
<tr>
<td></td>
<td>Changes in forages around calving</td>
</tr>
<tr>
<td></td>
<td>Changes in concentrates around calving</td>
</tr>
<tr>
<td></td>
<td>Grazing cows or zero-grazing without or with exercise area</td>
</tr>
<tr>
<td>Animal health</td>
<td>Retained afterbirth > 10% of the cows calved</td>
</tr>
<tr>
<td></td>
<td>Milk fever > 4% of cows calved</td>
</tr>
<tr>
<td></td>
<td>Ketosis > 5% of cows calved</td>
</tr>
<tr>
<td></td>
<td>Mastitis, or endometritis > 15% of cows calved</td>
</tr>
</tbody>
</table>

Dairy farming is an economic process where resource factors are turned into income (production) factors. Diseases cause substantial economic loss in dairy herds and some key indicators are provided in the text. Several examples have been given to exemplify how one can deal with certain issues in practice.
Economic indicators for losses due to disease

Noordhuizen, Cannas da Silva, Boersema, 2007

Reproductive performance

The ideal calving interval is still around the 365 day period, given the actual milk production level. But under certain conditions, (eg. high production persistency with high level of production) this mean interval could feasibly be extended as losses are largely compensated for by milk income (Berentsen et al., 1999).

Beyond 395 days, every additional day yields economic losses in the region of around 0.5 to 1 Euro per cow per day between 395 and 425 days and 1 to 1.50 Euro per cow per day after the 425 day interval.

If a cow with reproductive problems finally becomes pregnant, the associated economic losses are less than if the same cow was culled. For the latter, losses would be doubled!

In herds with seasonal calving only, losses would be around 2 Euro per cow for each day of delay in calving interval (Buckley & Mee, 2006).

Table 8.1. Estimation of economic losses due to intra-mammary infections in an average situation (in Euro)

<table>
<thead>
<tr>
<th></th>
<th>Losses per cow with clinical mastitis</th>
<th>Losses per cow without udder infection</th>
<th>Total losses per 100 cows (€)</th>
<th>Loss as a percentage of total loss</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streptococci spp.</td>
<td>240</td>
<td>20</td>
<td>2860</td>
<td>40</td>
</tr>
<tr>
<td>Coliforms</td>
<td>200</td>
<td>-</td>
<td>1375</td>
<td>19</td>
</tr>
<tr>
<td>Staphylococci spp.</td>
<td>275</td>
<td>35</td>
<td>1115</td>
<td>16</td>
</tr>
<tr>
<td>Aerogpyogenes</td>
<td>285</td>
<td>-</td>
<td>455</td>
<td>7</td>
</tr>
<tr>
<td>Bacteriology</td>
<td>235</td>
<td>-</td>
<td>1300</td>
<td>18</td>
</tr>
<tr>
<td>IN TOTAL & ON AVERAGE</td>
<td>235</td>
<td>25</td>
<td>7110</td>
<td>100%</td>
</tr>
</tbody>
</table>

(adapted after Berentsen, Saatkamp, Stelwagen & van Vliet, 1999)

Table 8.2 Losses due to claw disorders

<table>
<thead>
<tr>
<th></th>
<th>Per case</th>
<th>Per cow present</th>
</tr>
</thead>
<tbody>
<tr>
<td>-a- Milk losses</td>
<td>55 Euro</td>
<td>15 Euro</td>
</tr>
<tr>
<td>-b- Losses in BCS or body weight</td>
<td>5 Euro</td>
<td>1.5 Euro</td>
</tr>
<tr>
<td>-c- Costs of treatment & additional labour</td>
<td>20 Euro</td>
<td>5 Euro</td>
</tr>
<tr>
<td>-d- Loss of reproductive performance</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>-e- Premature culling</td>
<td>225 Euro</td>
<td>5 Euro</td>
</tr>
<tr>
<td>Total (per cow present/year)</td>
<td>25 Euro</td>
<td></td>
</tr>
</tbody>
</table>

based on differences in the economic models applied, in regional husbandry methods and in milk price rating, etc. (Østergaard, 2005; Huijps et al., 2008).
Table 8.10 The economics of robotic versus conventional farms

<table>
<thead>
<tr>
<th>Costs (€)</th>
<th>Conventional</th>
<th>Robot farms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net revenue per 100 kg milk</td>
<td>28.82</td>
<td>27.90</td>
</tr>
<tr>
<td>Fertiliser</td>
<td>0.46</td>
<td>0.35</td>
</tr>
<tr>
<td>Energy</td>
<td>1.22</td>
<td>1.31</td>
</tr>
<tr>
<td>Personnel</td>
<td>0.33</td>
<td>0.24</td>
</tr>
<tr>
<td>Depreciation</td>
<td>7.90</td>
<td>9.19</td>
</tr>
<tr>
<td>Lease costs / quota</td>
<td>0.51</td>
<td>0.59</td>
</tr>
<tr>
<td>Other</td>
<td>7.10</td>
<td>7.75</td>
</tr>
<tr>
<td>Financing</td>
<td>4.52</td>
<td>5.11</td>
</tr>
<tr>
<td>Totals (including machine costs)</td>
<td>6.78</td>
<td>3.36</td>
</tr>
<tr>
<td>Depreciation - machines/installations</td>
<td>1.92</td>
<td>3.45</td>
</tr>
<tr>
<td>Maintenance, small materials</td>
<td>1.19</td>
<td>1.52</td>
</tr>
<tr>
<td>Other machinery</td>
<td>0.23</td>
<td>0.32</td>
</tr>
<tr>
<td>Fuel</td>
<td>0.59</td>
<td>0.58</td>
</tr>
<tr>
<td>Calculated interest (machinery)</td>
<td>0.59</td>
<td>1.20</td>
</tr>
<tr>
<td>Costs of machines/installations</td>
<td>4.52</td>
<td>7.07</td>
</tr>
</tbody>
</table>

Source: ABAB, 2008
Feed & Feeding Management
Cattle nutrition is one of the pillars of cattle production. Evaluation sheets and checklists are presented designed to help fine-tune feed and feeding management on the farm. Lists highlighting areas for risk assessment have also been included. Maize silage has received particular attention, not only because it is a good ration component, but also because it has sustainability features. Finally, this chapter contains a simple monitoring tool that includes scoring rumen fill, faecal consistency and undigested faecal fibre, which can be used as part of routine monitoring of rumen function, rumen health and productivity.
Table 9.6 Checklist for risk factors associated with reduced feed intake

<table>
<thead>
<tr>
<th>Risk factor good</th>
<th>-Note Score* 1 = poor; 5=</th>
<th>Target value</th>
<th>Score*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry period management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preparation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conditions at close-up</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palatability of grass silage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Palatability of maize silage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibres in grass silage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibres in maize silage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other feed (by)products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeding management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeding according to targets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fresh, quality rations fed</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conserved forage analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixing & mixing time</td>
<td>< 10 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supply</td>
<td>24 hr/day</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Increase in concentrates after calving</td>
<td>300 g/d</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competition among cows for cubicles (100% availability needed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competition of cows for feed places (100% availability needed)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Competition of cows for escape routes (3 routes for every 60 m)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed refusals and quality (< 5%; homogenous)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claw/leg health</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cow comfort</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ventilation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Light (at level of cows shoulders)</td>
<td>150 lux</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Space available behind feed rack</td>
<td>350 cm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Size of cubicles (depends on type)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Softness of bedding (knee-test)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water provision</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Availability (additional troughs in heat stress periods)</td>
<td>6 cm width per cow (summer: 9 cm)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trough positioning in barn</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleanness (fresh; no sediment; no odour)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water distribution system</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water distribution for calves separate from dry and lactating cows</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production persistency</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 9.7 Checklist for risk factors associated with palatability of forage

<table>
<thead>
<tr>
<th>Risk factors</th>
<th>Score for primary forage source 1 (poor) to 5 (good)</th>
<th>Score for secondary forage source 1 (poor) to 5 (good)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed harvesting & stock</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particle length</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% DM in silage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Additives</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silage density</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Height of silage hump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeding speed of the silage hump per week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silage made in layers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silage made in vertical portions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heating found in silage hump</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Covering of silage correct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature in the silage hump is > or < ambient temperature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Silage-face cutting method</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remainders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time interval between cutting and feeding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quality losses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feeding speed of the silage hump per week</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time taken to mix TMR (norm < 10 min)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Cattle barns are a basic component of the cattle environment. The current principle is that the barn design should follow the cows' needs rather than human needs or human welfare. Many errors exist in today's cattle barns. Practical elements are provided in this chapter together with checklists for evaluation.
Hygiene
When attempting to improve animal health status and product quality, the application of strict hygiene practices is a prerequisite. This chapter provides a number of golden rules for hygiene and disinfection.
Hygiene & management in the milking parlour

After S. Klimpel & B. Maassen-Francken, GEA Group, Internatl Dairy Topics vol.10, nr.3

Figure 11.2 Hygiene and management in the milking parlour
Management
Farm management has become increasingly important and not only because of the increasing administrative burden put on farmers’ shoulders. A farmer has to carry out around 400 daily decisions, processes and functions. Many farmers have become entrepreneurs and need to behave as such in order to achieve the best results. On a farm with several employees, communication, discussion, people management and perception handling become critically important - this chapter provides information to facilitate this. Finally, physical problems and the importance of safety on the farm are highlighted.
Mastitis
This chapter deals with various practical tools for monitoring, diagnosing and treating mastitis cases. Additionally, problem analysis protocols and checklists are presented, as well as checklists for detecting potential errors in the milking machine and among milkers.
Teat-end callosity can be scored in a very detailed manner (Neijenhuijs et al., 2001 & 2005), a less detailed practical manner (with a 1-5 scale) and a simple practical manner (with a 1-3 scale).

The latter is sufficient for a Diagnostic Herd Evaluation. It is always possible to go into more detail once a problem has been detected.

Teat-end callosity is associated with an increased risk of mastitis, in particular Staph. aureus mastitis.

There are two criteria for determining teat-end callosity: a ring and thickening of tissue:

- The ring can be smooth or frayed
- The thickening can be present or absent

The scoring method has been described above, with lowest scores (1-2) being preferred and highest scores (3-4) being undesirable.

Some remarks

After milking the teat must leave the teat liner and cluster in a nearly dry condition.

If the teat is wet, there is a problem with the speed at which the milk is transported to the milk container. The teats end up being "washed" in their own milk. In this situation, bacteria can easily travel from one quarter to another.

Score 1: This is the perfect score. No edema after milking; a round smooth ring. An indication for the least lesions caused by the milking machine.

Score 2: The first signs of callosity are the round but thick rings around the teat base. The teat end is a little swollen.

Score 3: The teat end is swollen; the ring is round but irregular and thick.

Score 4: At the teat end one can observe the round thick ring, very edematous and eversed. There are not yet looking like warts.

Score 5: This score is given to cases which look and feel like warts. The teat end is eversed and frayed.

Figure 13.1 Teat end callosity scoring
Solution:

- Install milk reception containers in the milking parlour at each post
- Install claws with a milk volume that is much larger (e.g., 100 or 200 ml)
- Use other installation measures for rapid milk transportation in the system.

A (sometimes blue) ring is visible at the teat base after milking.

During milking, the teat liner can crawl up the teat towards the base, for example when wet udder preparation has been carried out and teats are wet when the cluster is attached. Another causal factor may be teat liners, which are too wide, long or short, or poor functioning of pulsators, too long a duration of milking, or a too high a vacuum. Cows with blue rings are often poorly milked. First lactation heifers and cows in early lactation are most frequently affected.

Flat teats.

This teat has been blocked in the teat liner, which can be painful for the cow. The cause is a too long D phase (empty phase) of the pulsator, worn out teat liners, or teat liners, which are too hard or wide.

Petechia on the teat skin.

These little haemorrhages are caused by too high a vacuum under the teats or teat liners that are too large.

and finally...

The skin of the teat must feel flexible, without cracks or lesions. This can be achieved by applying good cosmetic teat-care products and good housing (cow comfort).

Taking milk samples

Only bacteriology, carried out on milk samples taken from cows with udder infections, can give information about causative pathogens causative of mastitis in dairy farms. A bacteriological profile at herd level is very useful for a more effective mastitis treatment and, therefore, more economical. This applies to both new and recurrent infections.

A milk sample must be taken before any antibiotic treatment.

1. Write the ID or name of the cow to be sampled, the quarter and the date on the label with a waterproof pencil
2. Take a clean towel and clean the teats and teat ends of one (1) cow
3. Eliminate the first milk streams
4. Disinfect the teat orifice (teat end) with 80% alcohol
5. Again, eliminate some milk streams; take the cap off the sampling container in using an aseptic technique
6. Milk a few milk streams into the sampling container but do not fill above ¾; tilt the sampling container while milking to avoid contamination with dirt
7. Put the cap of the sampling container back on using an aseptic technique and seal it
8. Write the ID or name of the cow, the quarter and the date on the label with a waterproof pencil
9. Put the sampling container in the freezer until the next farm visit from the vet. Or send it to the laboratory in the appropriate manner
Milking practise
Protocols for evaluating milking procedures are provided in this chapter and the analysis of milking machine problems is addressed. Various material dealing with good milking practices are given, which can be considered part of Good Dairy Farming Codes of Practice.
Milking machine and/or personnel problems

<table>
<thead>
<tr>
<th>Problem</th>
<th>Checkpoints for milking machine</th>
<th>Checkpoints for personnel</th>
<th>Other potential causes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Somatic cell count is too high</td>
<td>See known risk factors</td>
<td>Adaptation of milking practice ?</td>
<td>Other known risk factors</td>
</tr>
<tr>
<td>Too many bacteria in the milk</td>
<td>Cleaning of the machine after milking is poor. The water temperature is too low at start (<80°C) and/or at end of cycle (<40 °C). Machine parts are worn.</td>
<td>A non-hygienic milking.</td>
<td>Temperature of bulk tank is too high (>4°C). Cleaning of tank is insufficient.</td>
</tr>
<tr>
<td>Loss of milk production</td>
<td>Insufficient milking: Vacuum; ratio; pulsation; teat liners.</td>
<td>Poor udder/teat preparation (variable; disturbed routines; too many different people).</td>
<td>Feeding Weather Genetics Housing Climate etc.</td>
</tr>
</tbody>
</table>
Production
Milk production is a core business on every dairy farm. This chapter provides several issues relative to milk production, such as a process diagram of milk production, the evaluation of bulk milk tank samples, interpretation of milk protein and fat contents and the relationship between milk urea, milk fat and milk protein contents.
Reproductive performance has always been a key component of herd fertility schemes and herd health & productivity management. In this chapter, we limit ourselves to the interpretation of herd reproductive data, monthly and yearly performance data. Moreover, a protocol is introduced for analysing reproductive problems in the herd. Finally, some more specific aspects are addressed, such as *Neospora* abortions and the relationship between milking and oestrus/ovulation in dairy cows.
Robotic milking
This chapter starts with aspects to consider before installing a milking robot on the farm. Additionally, robot milking and udder health, the use of data from the robot and a protocol for using the robot are also dealt with, together with key success factors for robotic milking.
Sustainability on the dairy farm is a hot topic and is, therefore, included in this book. This chapter presents the four pillars of the sustainability concept and subsequently deals with contributions from the food chain to climatic change. Finally, several approaches to improve sustainability on the dairy farms are presented.
Values of reference
Dairy farming is a process based on economics and performance parameters used to evaluate this process. To address performance over time, the (monthly or yearly) performance parameters are compared with target or reference values. Such target values are primarily farm-based. Performance parameters can also be compared with those of other, similar farms, or whole regions. In this chapter, various reference values are presented, as an example, to facilitate comparisons. Farmers should always set target values for performance on their own farm.
Dairy production parameters

Table 20.1 Reference value for cows for important dairy production parameters- diagnostic evaluation

<table>
<thead>
<tr>
<th></th>
<th>At calving</th>
<th>Early lactation</th>
<th>Mid lactation</th>
<th>End lactation</th>
<th>At dry off</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body condition score (1-5)</td>
<td>3 ½ → 3</td>
<td>2 ½ → 3</td>
<td>3</td>
<td>3 → 3 ½</td>
<td>3 ½ → 4</td>
</tr>
<tr>
<td>Rumen Fill score (1-5)</td>
<td>3</td>
<td>3</td>
<td>3 ½</td>
<td>4</td>
<td>4 – 4 ½</td>
</tr>
<tr>
<td>Faecal consistency score (1-5)</td>
<td>2 - 3</td>
<td>2 - 3</td>
<td>3</td>
<td>3 - 4</td>
<td>4</td>
</tr>
<tr>
<td>Fibres in faeces score</td>
<td>1 - 2</td>
</tr>
<tr>
<td>Locomotion score (1-5)</td>
<td>Herd distribution</td>
<td>> 85% at score 1 or 2</td>
<td>< 10% at score 3</td>
<td>< 3% at score 4</td>
<td>< 2% at score 5</td>
</tr>
<tr>
<td>Hock lesions</td>
<td>< 15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poor leg posture (% of cows in herd)</td>
<td>< 15%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hygiene & cleanliness</td>
<td>Herd distribution</td>
<td>> 85% of the cows at score 1 or 2</td>
<td>< 15% dirty cows (score 3 or 4)</td>
<td>< 5% dirty dry cows (score 3 or 4)</td>
<td></td>
</tr>
<tr>
<td>Ketosis</td>
<td>Herd level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acidosis</td>
<td>Herd level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digestive problems</td>
<td>Herd level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency of cows ruminating in the herd</td>
<td>Herd level</td>
<td>> 85%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Reference & target values are dynamic and can vary according to production, breed, husbandry method etc
Dairy farms producing milk, meat and dairy products have a great responsibility toward society. This responsibility concerns veterinary public health and food safety elements. Public health hazards as related to food safety are summarised in this chapter. Subsequently, an overview of zoonoses is given in a checklist format, as well as the main characteristics of zoonoses. Methods for the improvement of food safety are also included.
Water
Water is a primary need for dairy cattle. Water quality is relevant with respect to chemical, microbiological and managerial hazards. In this chapter, water quality is addressed, including quality parameters and water quality criteria. A checklist for evaluating water quality, as well as a practical tool for self-testing water quality on the farm, is given. Finally, the topic of surface water as a source of drinking water for dairy cattle and potential microbiological contamination of water are addressed.
Self-testing water quality: Colour, transparency and sediment

- Colour good
 - Transparency good

- Colour poor
 - Transparency good

- Colour poor
 - Transparency good

- Colour bad
 - Transparency bad poor

- Colour good
 - Transparency good

- Colour good
 - Transparency good

- Colour good
 - Transparency good

Sediment poor
Drinking water
Abomasal displacement 15, 31, 33, 218, 387, 389
Abortion 83, 432, 434
Aflatoxin 244–246, 248, 377
Air humidity 147, 320
Air movement 104
Air speed 104, 147, 172, 248, 264
Animal health management 45
Antibiotic 7, 87, 247, 320

Benchmarks 5, 407
Betahydroxybutyrate BHT 16, 41
Biological needs 157–159, 161, 164
checklist 50–54, 51, 52, 53, 54, 56, 67
plans 424
protocol 72, 319
Bird control 71, 74
Birth management 15
Body condition score (BCS) 75, 84, 320, 368, 397
Body weight 68, 69, 82, 98, 102, 163, 175, 197, 199, 200, 238, 239
Bovine viral diarrhoea (BVD) 9, 14, 26, 44, 45, 48, 49, 52–54, 58, 74, 79, 80, 84, 108–111, 168, 176, 178, 179, 181, 304, 395, 417, 424
control 79
Buildings 64, 71, 106, 149, 161, 171, 178, 364, 365, 368, 370, 374, 375, 409, 439

C

Calf
health 65
mortality 107, 108, 198–200, 386
rearing 82, 86, 107

Casuality 15
Cattle nutrition 211
Cattle welfare 10, 302
Cell counts 304
Checklists 79, 167, 211, 263, 309
Claw
health 17, 119, 135, 141, 142, 155, 160, 161, 193, 327, 344, 400, 402, 421
treatment 143
trimming 24, 27, 120
Climate 12, 13, 18, 19, 24, 27, 29, 60, 61, 80, 82–84, 89, 90, 104, 106, 136, 147, 151, 153, 155, 157, 159, 181, 189, 192, 204, 215, 240, 247, 264, 267, 296, 320, 321, 323, 363, 402, 414, 415, 421, 456, 458, 460, 462
Clinical signs 98, 180, 432, 434
Closed farm 46, 439
Clostridium 75, 251, 252, 379, 380, 428
Cluster removal 329
CMT 13, 72, 312, 319, 323, 397, 462
Coaching 287–291, 417
Coagulase-negative Staphylococci 324, 325
Code of practice 24, 375, 383
Colostrometer 94, 151
Colostrum 15, 24, 49, 52, 55, 73, 76, 80, 81, 86, 87, 92, 94, 95, 100, 151, 182, 218
Communication 46, 64, 112, 281–284
Complaints 285, 365
Conflicts 287–290
Contamination 300, 324, 447
Continuous animal health monitoring (CAHM) 26
Control points 425
Cooling 148–151, 170, 171, 258, 372
Cow comfort 12, 154, 204. See also cattle welfare
Cubicles 12, 29, 60, 83, 85, 177, 215, 268, 269, 421
Cubicle size 12

Digital dermatitis 145
disease resistance 11, 76, 104, 168, 192, 193, 241, 298, 386
Disease transmission 45, 105
Dry cow 86, 332
Dry period 6, 11, 24, 30, 33, 75, 84, 97, 131, 168, 218, 224, 259, 298, 314, 324, 353, 386, 388

E
Ease of milking 341, 349
Economic indicators 196, 197, 198
Economics 104, 194, 206, 208
Endoparasites 68
Enterprise 39, 79, 299, 300, 302, 303
Environmental requirements 147

D
Dehorning 79, 80, 115, 181
Diagnostic evaluation 17, 18, 34, 420
Diagnostic herd evaluation (DHE) 21, 22, 24, 27, 28, 38, 39, 44, 135, 136, 296, 310
Index

Ergonometry 301

F

Faecal consistency 136, 223, 249, 251, 261, 320, 397, 458
Farm

calendar 38
data 21, 22, 27, 34, 36, 38, 39, 135, 422, 37
information 14
inspection 19, 371
performance 5, 40
visit 5, 10, 17–19, 21–22, 23, 24, 26–30, 34, 36, 38, 39, 120, 136, 137, 231, 233, 264, 311, 430, 39
visit report 18, 27, 28, 38, 39, 137, 183, 184, 185, 186
fatty acid profile 353
Feed bunk 24, 69, 84, 128, 149, 152, 177, 295, 329, 404, 407, 456, 461
Feedstuffs 45, 46, 73–75, 103, 136, 196, 213, 215, 222, 233, 243, 246, 366, 424

Fertility 7, 30, 35, 63, 109, 162, 222, 226, 281, 320, 382, 385, 386, 391, 397
Field kit HHPM 27
Five freedoms 157, 158, 368
Food-chain 415
Foot bath 9, 14, 421
Forage 11, 60, 74, 90, 173, 189, 223, 234, 235, 243, 248, 249, 305
Formaldehyde 62, 141, 142
Formularium 318

G

good housing practice 318
Good housing practice 264, 265

H

HACCP 357, 376, 377, 383, 425, 463
Hazards 58, 59, 248, 304, 375, 383, 427, 428, 436, 441, 451
Health monitoring 26
Health status 14, 47, 50, 55, 64, 65, 72, 168, 182, 204, 224, 239, 271, 296, 302, 312, 319, 333
Heart girth measurement 79, 92, 106
Heating in silage 232
Heifer 51, 84, 85, 101, 102, 199–201, 208, 239, 240, 330, 346
Herd health and productivity management (HHPM) 4–41
Herded performance 18, 21, 28, 31, 35, 36, 40, 199, 249, 368
Herded treatment advisory plan 28, 30, 60, 62, 296, 325, 403, 408
HHPM 97, 281, 287–290, 305, 397, 417, 438
Humidity 24, 74, 75, 80, 82, 83, 85, 104, 111, 126, 134, 136, 147, 148, 156, 159, 170, 177, 243, 246, 247, 267, 320, 439
Husbandry 17, 69, 157, 162, 196, 197, 204, 205, 414, 416, 420
I
IBR prevention 66
IgG 79, 80, 86, 92, 94, 95, 97, 151
Indicator cows 134
Infectious diseases 6, 11, 43, 44, 46, 47, 50–52, 58, 64, 168, 261
Intra-mammary infections 197, 207
J
Johnne's disease 44, 92, 239, 438
K
Klebsiella 321, 326
L
Lactation cycle 20
Lactose in milk 378
Lameness 31, 33, 48, 83, 84, 161, 177, 386, 387, 389
Lethargy 96, 114, 249
Lice 70
Liverfluke 13, 82, 83, 85
Locomotion 13, 24, 29, 40, 62, 82, 135, 156, 159, 161, 213, 223, 420
M
Machine milking 346, 347
Maize silage 75, 103, 132, 169, 219, 220, 222, 224, 226–230, 251, 252, 258, 379, 380
heating 224
Marketing 282, 293, 294, 332
Mastitis 6, 11, 12, 18, 20, 21, 23, 24, 26, 29, 31, 33, 36, 44, 54, 69, 72, 76, 83, 85, 164, 168, 177, 190, 192, 196, 197, 198, 200–203, 207, 223, 224, 225, 241, 247,
Index

Maturity of maize 256

Mb paratuberculosis 48, 49

Metabolic profile testing 15

Metritis scoring 25

Microbiological 44, 58, 92, 98, 265, 266, 332, 383, 424, 436, 437, 441, 442, 443, 447, 448, 451

Milk

protein 6, 7, 97, 216, 218, 354, 355, 381, 410, 422

quality 17, 33, 34, 36, 37, 50, 196, 329, 330, 389, 424

replacer 52, 80, 95, 103, 106, 182, 200, 368

samples 460

Milking

machine 15, 17, 18, 21, 54, 61, 273, 298, 309, 310, 321, 327, 328, 330, 335, 340, 344, 345, 347–349, 366, 369, 402, 424, 460, 462

practice 24, 192, 215, 376

practise 334–349

procedures 335, 359

Milking cows 9, 54

Monitoring 5, 25, 26, 33, 40, 58, 80, 162, 211, 248, 250, 309, 314, 368, 383, 401–403, 407

Monitoring protocol 5

Mortality 26, 79, 98, 106–111, 191, 198, 199, 200, 386

Motivation 27, 38, 283, 287–293

Mycotoxin 243, 244, 246–249

N

Negative energy balance 15, 24, 36, 63, 76, 151, 161, 259, 298, 321, 354, 391, 393, 457, 458

Neospora caninum 55, 394

Nitrate toxicity 174, 235, 238

Non-esterified fatty acids (NEFA) 16, 41, 187, 458

Novel ingredients 16

Nutrition 7, 10, 18, 109, 212, 247, 249, 281, 332, 403, 416

O

Odour 116, 177, 220, 228, 233, 267, 328, 360, 361, 362, 371, 372, 444, 446, 448

Oestrus 18, 23, 41, 82, 160, 161, 226, 247, 295, 385, 395, 397

Overall health 6

P

PA 21, 22, 225

Palatability 92, 93, 221, 227, 232, 233, 448

Parasites 67, 69, 71, 82, 83, 240, 70

Parasitology 180

Paratuberculosis 9, 14, 44, 45, 47–50, 58, 75, 81, 82, 451

Particle length 160, 219, 223
Pasture improvement 217
Pathogens 44, 46–49, 52, 69, 72, 74, 76, 191, 239, 274, 311, 314, 319, 321, 323, 324, 331, 332, 362, 424, 429, 451
Pen 12, 19, 45, 49, 63, 65, 80, 81, 83–86, 88, 92, 96, 104, 106, 111, 114, 182, 265, 304, 326, 401, 424, 436
Perception(s) 281, 291, 292
Personnel 291, 295, 327, 328, 331, 339, 344, 345, 363, 333, 345
Pests 67
Preventative measures 43, 60, 62, 178
Problem analysis 10, 17, 28, 34, 138, 139, 309, 459
Production process 253–255
Production units 352
Professional network 286
Prussic acid poisoning 173
Public health 10, 48, 248, 414, 427, 428
Pulsation 327, 348, 349

Q
Quality risk management 67, 357, 360, 377, 383, 424, 425, 463

R
Ration composition 27, 75, 76, 79, 84, 151, 226, 241, 246, 298
Reference values 5, 34, 36, 40, 92, 102, 140, 223, 391, 393, 419, 446, 460
Refractometer 94, 95, 151
Rehydration 79, 98–100, 116
Replacement heifers 52–54, 199, 296
Reproduction 7, 10, 23, 31, 33, 39, 156, 159, 188, 203, 325, 384, 388, 389, 410, 422
Reproductive performance 34, 35, 37, 39, 97, 109, 110, 197, 198, 200, 201, 223, 226, 246, 249, 354, 381, 391, 392, 393, 416, 458
problems 136, 197, 382, 385, 390, 391, 397, 400
Respiratory disease 7, 79, 82, 83, 104, 114, 181, 200, 389
disorders 80, 82, 83
Risk factors 28, 30, 36, 46, 58, 59, 66, 73, 80–84, 136, 140, 156, 160, 176, 177, 179, 182, 192, 193, 220–223, 324, 327, 328, 344, 345, 439, 451
Risk management protocol 65
Robotic milking 28, 399, 400, 402, 403, 409–411
Rodent control 394, 439
Rumen fill 24, 97, 136, 160, 218, 241, 243, 259, 320, 397, 405, 456
Rumen function 219, 223, 225, 244, 249, 451, 456, 458

S
Salmonella 26, 54, 55, 265
Salmonellosis 9, 14, 44, 58, 75, 82, 168, 176, 179, 438
Sanitation 51, 55, 56, 295, 365
Satisfaction inventory 6
Scoring management 295, 297
Selecting cows 23, 134
Shade 148, 149, 151, 170, 171, 235, 240
Index

Sire genetics 411
Special feedstuffs 233
Specialisation tasks 12
Spraying devices 152
Sprinklers 149–152, 171, 172, 451
Staphylococci 197, 321, 324, 325, 462
St. aureus 48, 49, 72, 314
Straw yards 156, 329
Stray voltage 16, 54, 331
Stress factors 168, 212, 321
Sub-acute ruminal acidosis (SARA) 40, 188, 189, 223, 354
Sub-clinical mastitis 196, 201, 203, 207, 316, 318, 320, 324–326
Surveillance 33, 111, 330, 403, 407, 458
Sustainability 211, 413, 414, 416
SWOT analysis 10

T
Teat
health 323
lesions 15, 24, 327, 344
Teat end callosity 161, 310
Total mixed ration (TMR) 11, 76, 130, 133, 160, 163, 169, 188, 214, 221, 222, 223, 230, 244, 246, 249, 251, 376, 380, 409
mixer wagon 222
Transition
disorders 187
period 11, 168, 218, 247
Transmission 44–49, 59, 72, 73, 105, 111, 319, 321
Tuberculosis 183–186, 431, 434

U
Udder
preparation 9, 14, 61, 338, 343
Unsaturated fatty acids (UFA) 250, 353
Urea 16, 31, 97, 217, 225, 355, 381, 382, 387, 410
Urea (milk urea) 223, 351, 378, 381, 382

V
Vaccination 13, 108, 181, 439
Vaccines 44, 58
Vaginal discharge 394
Values of reference 418–425
Ventilation 90, 105, 171, 177, 220, 421
Ventilators 105, 149–152, 160, 171, 172
Visit protocol 136
Vitamin E 241, 242, 244
Volatile organic compounds (VOC) 248

W

quality 58, 75, 87, 305, 360, 442–448

Working instructions 44, 58, 59, 119, 281, 403

Y

Young stock 17, 19, 26, 62, 70, 79, 83, 116, 148, 163, 181, 182, 199, 200, 208, 239, 240, 244, 302, 305, 439, 448, 463

Z

Zoonoses 265, 427, 429–431

Zoonotic diseases 191, 432–435