TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Industry development, genetics and breeding programs</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Reproduction</td>
<td>21</td>
</tr>
<tr>
<td>3</td>
<td>Lighting</td>
<td>47</td>
</tr>
<tr>
<td>4</td>
<td>Health management</td>
<td>63</td>
</tr>
<tr>
<td>5</td>
<td>Nutrition and feeding</td>
<td>123</td>
</tr>
<tr>
<td>6</td>
<td>Environmental control</td>
<td>195</td>
</tr>
<tr>
<td>7</td>
<td>Brooding and management of the growing pullet and rooster</td>
<td>217</td>
</tr>
<tr>
<td>8</td>
<td>Management of adult breeders</td>
<td>255</td>
</tr>
</tbody>
</table>

WARNING

Throughout this book we have mentioned various feed additives, vaccines, disinfectants and other pharmacological or chemical treatments. Not all of these products are registered in all countries, and so their legal use must be established prior to farm application. While we have mentioned numerous commercial products, we do not endorse or recommend these, and release that effective alternatives may be available. With any pharmacological product, vaccine or biological, it is essential to get local recommendations from qualified personnel, and to always administer products strictly according to manufacturers’ label recommendations.

Steven Leeson and John Summers
Guelph, January 2000
1.1 INTRODUCTION

Current breeding strategies mean that we no longer have to worry about genetic selection of our commercial broiler breeders. Even at the grandparent level, virtually all selection for heritable traits has been accomplished by the primary breeding company. For grandparents and parent stock, we have only to select birds based on their phenotype for such traits as skeletal integrity, morbidity etc. In large part, such selection is a consequence of birds reacting to adverse environmental factors, where fitness relates to birds performing well under “commercial conditions”. The breeding of broiler chickens ultimately comes down to gradual multiplication of the generations necessary to meet the ever increasing demands for broiler meat production. Each generation results in multiplication of bird numbers by factors of about 50 or 100 depending on whether one or both sexes are needed. Within a few generations, pure bred stock measured in just hundreds of birds quickly evolve into commercial broilers measured in hundreds of millions.

Virtually all the genetic selection work is accomplished by the primary breeders working with various pure-line families, and so the job of the commercial grandparent and parent breeders is essentially to expand numbers of offspring from these intensely selected birds. However this multiplication is an important and critical step in the breeding process. The management of broiler grandparent lines is a very specialized industry, and the task is given only to companies that have a history of success in breeder management and that have been carefully screened by the primary breeders. Management problems at the grandparent level have a devastating effect on the ability of a breeding company to maintain its market share of commercial broilers. Inability to meet market demand or production of inferior parent breeding stock or broiler chicks takes considerable
Managing the reproductive processes of the hen and rooster is the basis of broiler breeder production. An understanding of the basic reproductive physiology of both sexes is important in applying management principles involving feeding, lighting and health management. Following is an overview of reproductive processes in both sexes which are to some extent subject to manipulation by the breeder manager.

2.1 STRUCTURE OF THE OVARY AND OVIDUCT

The mature hen has only one ovary and oviduct even though left and right reproductive systems are evident during very early incubation. Unlike the situation with testes in the male, the right ovary and oviduct regress during mid-incubation, and are non-functional in all “normal” hens.

The left ovary is found deep in the body cavity lying in close proximity to the left kidney. During incubation as many as 20,000 eggs develop, of which about 2,000 are visible to the naked eye. There should be minimal development of these oocytes in the growing pullet, and consequently the ovary should be fairly difficult to find during necropsy. During maturation, a hierarchy of ovum will develop so as to supply a sequence of eggs for daily ovulation. In the mature hen the ovary should weigh around 35g, being composed of 3-4 large “maturing” follicles, and a series of 8-12 follicles of ever diminishing size. The follicles consist of concentric layers of “yolk” that are continually being deposited. If fat
Most birds are seasonal breeders and their reproductive cycle is controlled by changes in day length. Through its effect on the hypothalamus, light is responsible for the control over gonadotrophin releasing hormone production by the pituitary, and this is ultimately responsible for control of ovulation in the hen and spermatogenesis in the rooster. Both hens and roosters can, and do, reproduce in the absence of light or the absence of any meaningful change in the daily light:dark cycle. For example, hens kept in complete darkness will eventually mature and ovulate, and commercial breeders are sometimes kept in equatorial regions on farms without any electricity. Light and lighting programs are therefore not essential for reproduction in broiler breeders. Unfortunately, few farms have the luxury of a constant 12h light:12h dark natural photoperiod, and few houses are completely lightproof. Consequently, for most commercial flocks we must manipulate the lighting program so as to initially dictate age at sexual maturity and subsequently sustain egg production and fertility for a predetermined cycle.

3.1 BASIC PRINCIPLES OF LIGHT STIMULATION

Birds differentiate night from day because of the effect of light stimulating the hypothalamus in the brain. Light energy is converted into neural transmissions which ultimately guide the pituitary in releasing the all important gonadotrophin releasing hormones. However, birds are really not “stimulated” by the entire period of light, but rather by two important parts of this period. Birds are sensitive to the time of initial “lights-on” and subsequently during a period 11-13h later. This latter period is called the photosensitive phase, and essentially dictates whether or not the bird perceives the day as being “long” or “short”. A short day is not stimulatory, whereas a long day initiates or maintains the cascade of hormonal releases that control ovulation or spermatogenesis. Therefore if birds perceive light during the photosensitive phase which occurs 11-13h after initiation of natural dawn or “lights on”, then the ovary or testes can be functional. This pattern of dawn/dusk or lights-on/lights-off sets the circadian rhythm of the
Health management and biosecurity are perhaps the most critical aspect of modern breeder production. Disease outbreaks are especially catastrophic with breeders because of disruption in egg supply to the hatchery. Today it is becoming more difficult to achieve adequate isolation of breeder farms so as to ensure a comfortable degree of protection against flock infection. However even with isolation and optimum biosecurity procedures, it is impossible to ensure absolute protection for a flock of breeders. Health management today revolves around appropriate use of vaccines, biosecurity, and where appropriate, careful use of feed and water additives. We are now acutely aware of the importance of priming and maintaining optimum immune response in the bird, a situation that starts with the day old breeder and continues through to the end of the breeder cycle. Health management involves not only studying the immune function of the breeders themselves, but also the effect that these programs have on the immunity and health status of the embryo and young broiler chick.

Actual disease challenge obviously varies from country to country and even for different geographical locations within a country. Health management programs should obviously be tailored to combat local potential disease challenge. However breeder managers must be continually updated on new potential diseases and be prepared to modify the protective programs for their flocks. In this chapter, we have given only a brief description of potential diseases, because these are more adequately described elsewhere (Calnek et al., 1997). Although we have
The challenge of feeding broiler breeders relates to tempering their growth potential in order to realize adequate reproductive performance. As discussed in Chapter 1, there is a negative correlation between growth rate and reproduction, and so this means that we cannot allow either the hen or the rooster to exhibit genetic growth potential, because reproduction in these very large birds is uneconomical. Feeding programs therefore involve conscientious formulation of appropriate diets, and perhaps more importantly, a schedule for feed restriction aimed at control over growth rate. With commercial breeders, the weight of the birds at maturity is very similar to that potentially achieved at 5-6 weeks with free choice feeding. At this time,
6.1 Body temperature control

After brooding, the bird must maintain a body temperature close to 41°C. Being homeothermic, the bird is continually losing heat to its surroundings although the mechanisms involved change as both temperature and humidity change within the environment. Table 6.1 shows normal heat balance in an adult breeder with the need to remove about 325 kcal heat daily.
CHAPTER 7. BROODING AND MANAGEMENT OF THE GROWING PULLET AND ROOSTER

7.1 INTRODUCTION

The goals of the brooding and grow-out systems are to provide pullets and roosters of ideal weight, condition and stage of sexual maturity as they enter the breeder facilities. Such management requires knowledge and understanding of the growth and development of the birds and how these factors are influenced by husbandry decisions. The major factors influencing development of breeder birds are:

Nutrition and feeding management

Environmental control

Health status

Behavioral and social interactions

Strain specific development

Table 7.1 outlines major production goals for breeders in the growing period as well as the breeder cycle. All too often in integrated companies, the goals of the grow out manager are separated from those of the breeder manager. It must
The major goals in managing the adult breeders are to maintain the health status of the flock, while allowing for continued, but slow increases in body weight. As in the rearing period, some form of controlled feeding is essential in order to maintain ovary function. Under feeding causes failure to attain peak egg numbers, while overfeeding is more commonly associated with very rapid decline in egg numbers following a brief period of peak egg output. Body weight and condition therefore continue to be the major criteria for monitoring the development of the birds. Separate sex feeding of hens and roosters is almost universally accepted, although there has been a trend away from using specialized male diets, with all birds being fed diets formulated to the needs of the breeder hen. This choice of diet for the males is based simply on convenience for the manager. Because the hen diet is of a higher nutrient density than are specialized male diets, lesser quantities are necessarily given, and in part this accounts for the male aggressiveness seen in some flocks. The ultimate profitability of the breeder flock is dictated by the number of eggs produced. However not all eggs are suitable for incubation and measures of hatching success are usually incorporated into egg payments. The main concerns of the breeder manager in this regard are egg size, egg cleanliness, floor egg production, eggshell quality, fertility, hatchability and ultimately, chick quality. In truly integrated operations the growth performance of the broiler offspring becomes the ultimate goal in assessing breeder efficiency.
INDEX

A
- Air speed 198, 213, 226
- Albumen quality 280
- Amino acid
 - model prediction 144
 - requirements 130
- Antibodies 64
- Anticocecidials 84, 86, 99
 - hatchability 87
- Antigens - E. coli 74
- Antimicrobials 84
- Artificial insemination 35
 - commercial use 39
 - costs 41
 - timing 38
- Aspergillosis 121
- Avian influenza 116
- Avian Rhinotracheitis 116

B
- Bacterins 106
- Beak trimming 235
- Behavior
 - aggressive 33
 - mating 28
- Biomittent lighting 48
- Biosecurity 63, 76, 264, 267
 - costs 81
 - levels 80
- Black-out housing 207, 250
- Blood sampling 83
- Body composition 153
- Body temperature 195
- Body weight 152, 167, 236
- Breeder hen nutrition
 - amino acids 158
 - body weight 161, 167
 - broiler growth 191
 - calcium source 174
 - challenge feeding 162
 - egg production 160
 - eggshell quality 172, 175
 - energy 154, 157
 - feed clean-up 169
 - feed efficiency 175
 - feed withdrawal 165
 - hatchability 183
 - lead feeding 161
 - protein effects 158
 - separate sex feeding 171
 - temperature 156
 - time of feeding 170
- Breeder traits 13
- Breeding programs 13
- Breeds 3
- Broiler industry 4
- Broiler traits 5, 13
- Broodiness 28
- Brooding 219
- Building design 203, 232, 260, 272
 - blackout 207
 - evaporative cooling 214
 - humidity 206
 - insulation 203
 - open-sided 209
 - static pressure 207
 - vapor barriers 206
- Bursa of Fabricus 64

C
- Caged breeders 172
- Calcium
 - prebreeder 151
 - source 174
- Carcass composition 140
- Challenge feeding 162
- Chick Anemia Virus 115
- Chick costs 15
- Chlorine 81
- Clutch length 23
- Coccidiosis 98, 144
 - vaccines 75
- Coccidiostats. See anticocecidials
- Coefficient variation 244
- Colibacillosis 119
- Competitive exclusion 110
- Controlled environment 264
Culling 41
Curtain housing 209

D
Daily feed restriction 134, 137, 143
Darkling beetle 93
Diet specifications
 breeder 128
 grower 126
 prelay 127
 starter 125
Disinfection 81
Drinker type 231
Dubbing 179, 228
Dust
 air speed 213
 environment 201
 ventilation 210

E
Early dead embryos 38
E. coli
 infection 105
 vaccination 74
Egg
 appearance 282, 284
 breakout 42
 cleaning 287
 collection time 277
 handling 287, 290
 mass 163
 production
 costs 292
 nutrition 160
 sanitation 287
 size 282, 283
 storage 289
 structure 278
 transportation 290
 weight 25, 153
Egg Drop Syndrome 115
Eggshell
 quality 172, 175, 284
 structure 279
 thickness 170
 weight 25
ELISA 65, 88, 109
Embryo
 deficiency symptoms 185
 mortality 43, 187
Encephalomalacia 114
Energy-diet
 temperature 144
Energy-diet
 body weight 167
 breeder needs 154
 carcass composition 142
 feed intake 258
 partition 157
 requirements 164
 reserves 141
 temperature 156, 169
Environmental control 195
Epidemic Tremor 114
Equipment 266
Erratic ovulation 8
Evaporative cooling 214, 261

F
Feathering 246
Feed
 clean-up 169
 efficiency 138, 175
 intake 258
 management 228
 restriction 133, 134, 143
 scheduling 139
 supply 227
 timing 170, 199
 withdrawal 164
Feeder
 design 274
 exclusion grill 275
 space 219
Fertility 38, 42, 178, 293
 diet protein 159, 183
 female 31
 male 33
Fleas 93
Fleshing 246
Flies 92
Floor eggs 111, 277
Floor space 219
Follicles 22
Footpad lesions 40, 105
Formalin 82
Fowl Cholera 107, 117
Fowl Pox 117
Fowl Typhoid 118
Furazolidone 112

G
Gas levels - environment 201
Genetic selection 1, 5
Germinal disc 31, 42
Grandparents 14
Growing costs 250
Growth-prebreeder 150
Gumboro Disease 115

H
Hatchability 38, 178, 183, 184
egg appearance 284
prebreeder nutrition 153
troubleshooting 293
vitamin deficiency 186
Haugh unit 281
Health management 63
Heat balance 196
building insulation 205
conduction 197
convection 197
evaporation 198
feeding time 199
radiation 197
Heat stress 32
Heritability 6
Housing design 260
Humidity 206
Hypothalamus 47

I
Immunity 64, 141
Infectious Bronchitis 112
Infectious Bursal Disease 115
Infectious Laryngotracheitis 113
Ingredient usage 132
In-ovo vaccination 71
Insect control 90
Insecticides 91
Insulation 203
Internal parasites 94
Iodine disinfectants 82

J
J-virus 100

K
Keel length 246

L
Lameness 103
Larvadex 93
Larvicides 92
Lead feeding 161
Leucosis 100
Lighting 47
ahemeral 60
fluorescent 200
gas discharge 201
incandescent 200
intensity 58
latitude effect 52
light-dark cycle 49
natural 50
ovulation 24
programs 52, 55, 247
Lutetizing hormone 52
Lymphocytes 64
Lymphokines 64

M
Macrophages 64
Male. See also Rooster
aggression 34
costs 253
feed 182
feeders 272
growing system 249
reproduction 33
selection 251
Marek's Disease 114
vaccines 72
Maturity 54, 150
Metabolizable energy 156
Mice control 97
Index

Models
 amino acids 158
 nutrient needs 143, 145
Mold 88
 inhibitors 88
Molting 28
 patterns 247
Muscular dystrophy 104
Mycoplasma
 gallisepticum 120
 iowae 104
 synoviae 120
Mycotoxins 88

N
Nest
 design 269
 management 275
Nicarbazin 87
Northern Fowl Mite 91
Nutrient intake 131, 143

O
Obesity 34
Omphalitis 106
Open-sided houses 209
Ovary structure 21
Oviduct structure 21
Oviposition time 23
Ovulation 22, 27
 EODES 8
 feeding level 26

P
Paratyphoid 118
Pasteurella Multocida 107
Phenol disinfectants 82
Photoperiod 47
Photorefractory 49
Photosensitive period 48
Prebreeder
 body composition 153
 body weight 152
 calcium 151
 egg weight 153
 nutrition 149
 Probiotics 84
 Production goals 218, 256
 Propionic acid 89
 Protein-diet
 fertility 183
 pullet growth 140
 requirements 164
 shank length 140
 Pullorum Disease 117

Q
QUATS 82, 111

R
Rat control 97
Relative humidity 206
 brooding 223
Rodent control 97
Roosters. See Male
 body weight 260
 energy needs 177
 feed intake 260
 feed schedule 180
 growing system 147
 nutrient needs 177
 separate feeds 182

S
Salmonellosis 108, 110, 117
Salpingitis 106
Sanitization 81
Scheduling flocks 17
Selenium 105
Semen
 dilution 37
 evaluation 35
 Separate sex feeds 171
 Sex determination 9
 colour 9
 feathers 10
 Sexing errors 227
 Shank length 140
 Skip-a-day feeding 134, 137, 143
 Slatted floors 269
 Specific gravity 285
 Sperm evaluation 35
Spiking 31, 291
Staphylococcal infection 103, 118
Sudden Death Syndrome 121
Swollen Head Syndrome 116

T
Temperature
 body 195
 brooding 223
 energy needs 144, 156, 169
 water intake 148
Testes structure 33
Thymus 64
Tiamulin 87
Tissue sampling 83
Toe clipping 228
Tryptophan behaviour 35

U
Uniformity 161, 243
 pullets 237
 records 241
 roosters 238

V
Vaccination
 chlorine water 69
 coccidiosis 75, 99
 E. coli: 74
 injection 68
 in-ovo 71
 live vs killed 67
 Marek’s 72
 programs 66, 248
 schedule 68
 spray 71
 techniques 67
 timing 71
 water 69
 wing web 71
Vapor barriers 206
Ventilation
 brooding 225
 static pressure 207
 troubleshooting 210
Viral arthritis 103, 119
Vitamin
 D3 172, 284
 deficiency 186, 187
 E 65

W
Water
 brooding 226
 intake 70, 146, 147
 management 230
 quality 233
 sanitizers 234
 space 219
 systems 276
 tank design 231