COMMERCIAL POULTRY NUTRITION THIRD EDITION

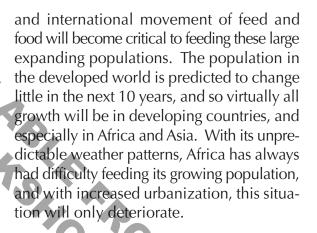
by

and JOHN D. SUMMERS, Ph.D. Professor Emeritus Profess.

ent of Animal and K. University of Guelph Guelph, Ontario, Canada Department of Animal and Poultry Science

> **PUBLISHED BY Context Products Ltd** 53 Mill Street Packington Leicestershire **LE65 1WN**

TABLE OF CONTENTS


CHAPTER 1	GLOBAL POULTRY PRODUCTION
CHAPTER 2	INGREDIENT EVALUATION AND DIET FORMULATION
CHAPTER 3	FEEDING PROGRAMS FOR GROWING EGG-STRAIN PULLETS
CHAPTER 4	FEEDING PROGRAMS FOR LAYING HENS
CHAPTER 5	FEEDING PROGRAMS FOR BROILER CHICKENS
CHAPTER 6	FEEDING PROGRAMS FOR BROILER BREEDERS
CHAPTER 7	FEEDING PROGRAMS FOR TURKEYS
CHAPTER 8	FEEDING PROGRAMS FOR DUCKS AND GEESE
CHAPTER 9	FEEDING PROGRAMS FOR GAME BIRDS, RATITES AND PET BIRDS
	APPENDIX - INGREDIENT COMPOSITION DATA
	INDEX

GLOBAL POULTRY PRODUCTION

1.1	World animal production1
	Poultry meat production
1.3	Egg production
1.4	Future considerations for poultry production 5
1.5	Global feed production

1.1 World Animal Production

roduction of most farm animal species has increased over the last 10 years, and predictions are for this trend to continue in the near future. Poultry has seen the greatest increase in production and again, this trend will likely continue. Both poultry meat and eggs are well positioned to meet demands for increased supply from our growing world population. Prediction of world populations is always subject to adjustment, but it seems as though we will have around 7 billion people to feed by 2008. However, an obvious trend occurring is that this population is quickly aging and also living in urban settings of ever increasing size. Today almost 2% of the world's population live in the 10 largest cities in the world, and by 2008, we will likely have 20 cities with populations in excess of 10 million people. These large urban populations obviously rely almost 100% on food supply from rural areas. Traditionally such rural food supply has been grown adjacent to the urban populations, but this situation is becoming increasingly more difficult as these urban populations reach 10-15 million. National

In all countries, there is an aging of the population, and it is predicted that the proportion of people \geq 60 years of age, will double in the next 30 years. The purchasing power of many such individuals may not be adequate to sustain their usual diet supply. Up to now, and in the near future, we have been able to meet increased demands for food through a combination of increased supply coupled with improved production efficiency. Such improvements in efficiency of production will allow us to gradually upgrade the general nutritional status of the world population as a whole and it is evident that

SECTION 1.1 World Animal Production

Page

CHAPTER

CHAPTER

A.

INGREDIENT EVALUATION AND DIET FORMULATION

2.1	Des	cription of Ingredients
	1.	Corn
	2.	Wheat
	3.	Milo
	4.	Barley
	5.	<i>Rice</i>
	6.	Wheat by-products
	7.	Bakery meal
	8.	Rice by-products
	9.	Soybean meal
	10.	Soybean meal 31 Soybeans 35
	11.	Canola meal
	12.	Canola meal
	13.	Cottonseed meal
	14.	Flaxseed 44
	15.	Meat meal 47 Poultry by-product meal 50
	16.	Poultry by-product meal
	17.	Feather meal 52 Fish meal 54
	18.	<i>Fish meal</i>
	19.	Fats and oils
	OTH	IER INGREDIENTS Oats
	20.	Oats
	21.	<i>Rye</i>
	22.	<i>Triticale</i>
	23.	Rye 65 Triticale 66 Molasses 66
	24.	Dehydrated alfalfa
	25.	Full-fat canola seeds
	26.	Groundnut (peanut) meal
NTS	27.	<i>Peas</i>
	28.	Safflower
	29.	Sesame meal
	30.	Lupins
	31.	Blood meal
	32.	Sources of calcium, phosphorus and sodium
	33.	Trace minerals
	34.	Synthetic amino acids

9

10 CHAPTER 2 INGREDIENT EVALUATION AND DIET FORMULATION

2.2	Ing	redient testing	77
	а.	Bulk density	77
	<i>b</i> .	Proximate analysis	78
	с.	Amino acid analysis	79
	<i>d</i> .	Metabolizable energy (AME or TME)	80
	е.	Near infra-red analysis (NIRA)	80
	f.	Urease testing of soybeans and soybean meal	82
	g.	Protein solubility	82
	b.	Protein and amino acid dye-binding	83
	i.	Fish meal gizzard erosion factor	83
	<i>j</i> .	Sorghum tannins	
	k.	Gossypol in eggs	84
	l.	Fat assays	84
	т.	Hulls in rice by-products	85
	n.	Mineral solubility	85
2.3	Fee	d additives Pellet binders Anticoccidials	86
	а.	Pellet binders	86
	<i>b</i> .	Anticoccidials	86
	с.	Antibiotics growth promoters	88
	<i>d</i> .	Antifungal agents	90
	е.	Probiotics and prebiotics	91
	f.	Yeast	92
	g.	Enzymes	92
	h.	Pigments	96
	i.	Flavoring agents	96
	<i>j</i> .	Worming compounds	97
	k.	Odor control	97
2.4	Fee	d toxins and contaminants	98
	а.	Mycotoxins	98
	<i>b</i> .	Plant toxins	99
	с.	Autointoxication	06
	<i>d</i> .	Bacterial toxins	06
	е.	Chemotherapeutic drugs	07
	f.	<i>Toxic seeds</i>	07

CHAPTER 2 | 11 INGREDIENT EVALUATION AND DIET FORMULATION |

2.5	Fee	d manufacture
	а.	Vitamin-mineral premixes 110
	<i>b</i> .	Vitamin stability
	с.	<i>Pelleting</i>
	d.	Expanding, extrusion and thermal cooking
2.6	Wat	ter
	а.	<i>Water intake</i>
	<i>b</i> .	<i>Water output</i>
	С.	Water balance and debydration
	d.	Drinking water temperature
	е.	Water restriction
	f.	Water quality
	g.	General management considerations with water

2.1 Description of Ingredients

1. Corn

Other Names: Maize

Nutritional Characteristics:

orn has become the standard against which other cereals, cereal by-products and other energy-yielding ingredients are compared. In most poultry diets, corn will be the major contributor of metabolizable energy. World production is around 600 m tonnes of which 240 m tonnes are produced by the U.S.A. Although China is the world's second largest producer at around 100 m tonnes, Brazil at 40 m tonnes, is the second largest world exporter. The feed industry usually uses the equivalent of U.S.A. grade #2. As grade number increases, bulk density declines and there are greater permissible levels of damaged kernels and foreign matter allowed in the sample. Corn grade #2 should contain no more than 5% damaged kernels and 3% foreign material. While damaged kernels are unlikely to affect its energy value, foreign material is likely to reduce its energy value and hence monetary value.

Broken kernels are also potential sites for mold infestation.

The energy value of corn is contributed by the starchy endosperm, which is composed mainly of amylopectin, and the germ, which contains most of the oil. Most corn samples contain 3 - 4% oil, although newer varieties are now available which contain up to 6 -8% oil, and so contribute proportionally more energy. These high-oil corn varieties also contain 2 - 3% more protein, and proportionally more essential amino acids. The protein in corn is mainly as prolamin (zein) and as such, its amino acid profile is not ideal for poultry. This balance of amino acids, and their availability, must be seriously considered when low protein diets are formulated, because under these conditions the corn prolamin can contribute up to 50 - 60% of the diet protein. Corn is also quite high in

> SECTION 2.1 Description of ingredients

12 CHAPTER 2 INGREDIENT EVALUATION AND DIET FORMULATION

the yellow/orange pigments, usually containing around 5 ppm xanthophylls and 0.5 ppm carotenes. These pigments ensure that corn-fed birds will have a high degree of pigments in their body fat and in egg yolks.

While #2 grade is the standard for animal feeds, lower grades are often available due to adverse

growing, harvesting or storage conditions. Dependent upon the reason for lower grade, the feeding value of corn usually declines with increase in grade number. Table 2.1 shows the metabolizable energy value of corn necessarily harvested at various stages of maturity due to adverse late-season growing conditions.

Table 2.1 Corn maturity and energy value

Corn description	Moisture at harvest (%)	100 kernel wt at 10% moisture (g)	AMEn (kcal/kg) at 85% dry matter
Very immature	53	17	3014
Immature	45	22	3102
Immature	39	24	3155
Mature	31	26	3313

The energy value of corn declines by 10–15 kcal/kg for each 1 lb reduction in bushel weight below the standard of 56 lb/bushel. However, these lower bushel weight samples show no consistent pattern with protein or levels of most amino acids, although there is an indication of loss of methionine content with the immature samples.

Another potential problem with handling immature, high-moisture corn is that the drying conditions must necessarily be harsher, or more prolonged in order to reduce moisture level to an acceptable 15%. Excessive or prolonged heating causes caramelization of corn which then has a characteristic smell and appearance, and there is concern that lysine will be less available because of Maillard Reaction with available carbohydrates.

As detailed in subsequent ingredients there is processing of corn that yields products such as gluten meal and corn oil. However, in North America well over 95% of corn is used for animal feeds. There is some debate regarding the ideal size of ground corn particles for various classes of poultry. Within reason, the finer the grind, the better the pellet quality, while in mash diets, too fine a grind can lead to partial feed refusal. Table 2.2 indicates guidelines for expected distribution of particle sizes of corn ground to be 'fine' vs. 'coarse'. There seems to be some benefits in terms of AMEn of using a finer grind for birds up to 3 weeks of age, while a coarse grind is better for birds >21 d of age.

Depending upon the growing season and storage conditions, molds and associated mycotoxins can be a problem. Aflatoxin contamination is common with insect damaged corn grown in hot humid areas, and there is little that can be done to rectify the horrendous consequences of high levels of this mycotoxin. There is an indication of aluminosilicates partially alleviating the effects of more moderate levels of aflatoxin. If aflatoxin is even suspected as being a problem, corn samples should be screened prior to

SECTION 2.1 Description of ingredients

FEEDING PROGRAMS FOR GROWING EGG-STRAIN PULLETS

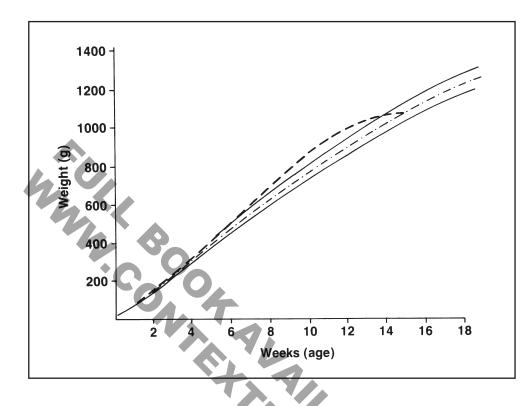
Page

CHAPTER

Diet specifications
Strain specific nutrient requirements
Feeding management of growing pullets
a. General considerations
b. Manipulating nutrient intake
c. Suggested feeding program
d. Manipulation of body weight at sexual maturity
e. Nutrient management
f. Prelay nutrition and management149
i. considerations for calcium metabolism
ii. prelay body weight and composition
iii. early eggsize
iv. pre-pause
v. urolithiasis
g. Lighting programs
<i>b.</i> Feed restriction

3.1 Diet specifications

able 3.1 shows diet specifications for Leghorn pullets, while Table 3.2 provides comparable data for brown egg birds. These nutrient specifications are intended for guidelines in diet formulation when general growth and development (as outlined by the primary breeders) is the goal of the rearing program. Pullets are grown under a range of environmental conditions and housing systems and these can influence nutrient needs. In most situations, variable management conditions influence energy needs, and so it is important to relate all other nutrients to energy level. In hot climates for example, the pullet will eat less and so nutrients, such as amino acids, will have to be increased accordingly. Pullets grown on the floor, rather than in cages, will eat more feed, and so amino acid levels can be reduced. The diet specifications are based on using conventional ingredients where nutrient digestibility is fairly predictable. When non-standard ingredients are used, it is essential to formulate to more stringent standards of digestibility, such as for digestible amino acids. Tables 3.3 - 3.6 show examples of diet formulations using corn, wheat or sorghum with and without meat meal.


> SECTION 3.1 Diet specifications

	Starter	Grower	Developer	Pre-lay
Age (weeks)	(0 to 6)	(6 to 10)	(10 to 16)	(16 to 18)
Crude Protein (%)	20.0	18.5	16.0	16.0
Metabolizable Energy (kcal/kg)	2900	2900	2850	2850
Calcium (%)	1.00	0.95	0.92	2.25
Available Phosphorus (%)	0.45	0.42	0.40	0.42
Sodium (%)	0.17	0.17	0.17	0.17
Methionine (%)	0.45	0.42	0.39	0.37
Methionine+cystine (%)	0.78	0.72	0.65	0.64
Lysine (%)	1.10	0.90	0.80	0.77
Threonine (%)	0.72	0.70	0.60	0.58
Tryptophan (%)	0.20	0.18	0.16	0.15
Arginine (%)	1.15	0.95	0.86	0.80
Valine (%)	0.75	0.70	0.65	0.60
Leucine (%)	1.30	1.10	0.92	0.88
Isoleucine (%)	0.70	0.60	0.51	0.48
Histidine (%)	0.35	0.32	0.29	0.26
Phenylalanine (%)	0.65	0.60	0.53	0.49
Vitamins (per kg of diet):				
Vitamin A (I.U)	8000			
Vitamin D_3 (I.U)	2500			
Vitamin E (I.U)	50			
Vitamin K (I.U)	3			
Thiamin (mg)	2			
Riboflavin (mg)	5			
Pyridoxine (mg)	4	*		
Pantothenic acid (mg)	12			
Folic acid (mg)	0.75			
Biotin (µg)	100		+ /	
Niacin (mg)	40		v	
Choline (mg)	500			
Vitamin $B_{12}(\mu g)$	12			15
Trace minerals (per kg of diet):				
Manganese (mg)	60			
Iron (mg)	30			
Copper (mg)	6			
Zinc (mg)	60			
Iodine (mg)	0.5			
Selenium (mg)	0.3			

Table 3.1 Diet specifications for leghorn pullets

SECTION 3.1 Diet specifications

148 CHAPTER 3 FEEDING PROGRAMS FOR GROWING EGG-STRAIN PULLETS

Fig. 3.5 Potentially harmful adjustment to pullet weight.

Such adjustments are invariably brought about by use of very low nutrient dense diets and/or use of restricted feeding. Both of these practices have the desired 'effect' of slowing down mean growth, but at the great cost of loss of pullet uniformity.

e) Nutrient management

Although growing pullets do not produce large quantities of manure in relation to adult layers, nutrient loading of manure will likely be a management consideration. Under average conditions of feeding and management, pullets will retain about 25% of nitrogen and 20% of phosphorus consumed. Most of the remaining phosphorus will be retained in the manure while around 30% of the excreted nitrogen will be lost as ammonia, either in the pullet house or during storage prior to land disposal. Based on these values for nutrient balance, Table 3.30 provides information on nutrient flow for pullets through to 18 weeks. On a per pullet basis therefore, each bird produces about 0.1 kg N and 0.03 kg P in the manure to 18 weeks of age.

Manure nutrient loading is in direct proportion to corresponding diet nutrient levels. Using lower protein or lower phosphorus diets will invariably result in less of these elements appearing in the manure. Attempts at reducing crude protein levels in pullet diets, as a means of reducing feed cost and/or manure N loading, often results in poor growth rate (Table 3.31). Regardless of constant levels of the most important amino acids in these diets, pullets responded adversely to any reduction in crude protein. This data suggests that pullets have minimal needs for non-essential amino acids and/or that requirements for amino acids such as threonine and arginine are of more importance than normally

SECTION 3.3 Feeding management of growing pullets

CHAPTER

FEEDING PROGRAMS FOR LAYING HENS

Page

4.1	Diet specifications and formulations
4.2	Feed and energy intake
4.3	Problems with heat distress
	a. Bird's response to heat stress
	b. Maintaining energy balance
	c. Protein and amino acids
	d. Minerals and vitamins
	e. Electrolyte balance
	f. Water
	g. Effect of physical diet change
	b. Summary of nutritional management during heat
4.4	Phase Feeding
	Formulation changes and feed texture
	Nutrition and shell quality
4.7	Controlling egg size
4.8	Diet and egg composition
4.9	Diet involvement with some general management problems
4.10	Nutrient management

4.1 Diet specifications and formulations

Diet specifications for laying hens are shown in Table 4.1, and are categorized according to age and feed intake. There is no evidence to suggest that the energy level of diets needs to be changed as the birds progress through a laying cycle. The layer's peak energy needs are most likely met at around 35 weeks of age, when production and daily egg mass output are maximized. However, the layer quite precisely adjusts its intake according to needs for energy and so variable energy needs are accommodated by change in feed intake.

Most Leghorn strains will now commence egg production with feed intakes as low as 80 – 85 g/day, and it is difficult to formulate diets for such a small appetite. For brown egg strains, initial feed intake will be around 92 - 95 g/day and so formulation is more easily accommodated. For all diets, maintaining the balance of all nutrients to energy is the most important consideration during formulation.

In general terms, diet nutrient concentrations decrease over time, with the notable exception of the need for calcium. Thus, diet protein and amino acids expressed as a percent of the diet or as a ratio to energy, decline as the bird progresses through the laying cycle. In order to sustain shell quality, it is important to increase diet calcium level, and to concomitantly decrease diet phosphorus level, as the bird gets older. The need for less methionine is partially related to the need for tempering late-cycle increase in egg size, since this is usually uneconomical regarding egg pricing and larger eggs have thinner shells. There is little evidence for change in needs for vitamins and trace minerals as birds get older, and so a single premix specification is shown in Table 4.1. For most of the B-vitamins, it is possible to phase feed with up to 30% reduction by the end of the laying cycle.

Examples of layer diets using corn, wheat, or sorghum as the main energy source and with or without meat meal, are shown in Tables 4.2 – 4.5. The diets are categorized according to age of bird. It is difficult to achieve desired energy level in Phase I diets (Table 4.2) without resorting to inclusion of significant quantities of fat. If fat supply and quality is questionable, it may be advisable to reduce the energy level of the diet (and also all other nutrients in the same ratio), by up to 50 – 70 kcal ME/kg.

SECTION 4.1 Diet specifications and formulations

CHAPTER 4 **165** FEEDING PROGRAMS FOR LAYING HENS

Approximate age	18-32 wks 32-45 wks		5 wks	45-6	0 wks	60-70 wks		
Feed intake (g/bird/day)	90	95	95	100	100	105	100	110
Crude Protein (%)	20.0	19.0	19.0	18.0	17.5	16.5	16.0	15.0
Metabolizable Energy (kcal/kg)	2900	2900	2875	2875	2850	2850	2800	2800
Calcium (%)	4.2	4.0	4.4	4.2	4.5	4.3	4.6	4.4
Available Phosphorus (%)	0.50	0.48	0.43	0.4	0.38	0.36	0.33	0.31
Sodium (%)	0.18	0.17	0.17	0.16	0.16	0.15	0.16	0.15
Linoleic acid (%)	1.8	1.7	1.5	1.4	1.3	1.2	1.2	1.1
Methionine (%)	0.45	0.43	0.41	0.39	0.39	0.37	0.34	0.32
Methionine + Cystine (%)	0.75	0.71	0.70	0.67	0.67	0.64	0.6	0.57
Lysine (%)	0.86	0.82	0.80	0.76	0.78	0.74	0.73	0.69
Threonine (%)	0.69	0.66	0.64	0.61	0.60	0.57	0.55	0.52
Tryptophan (%)	0.18	0.17	0.17	0.16	0.16	0.15	0.15	0.14
Arginine (%)	0.88	0.84	0.82	0.78	0.77	0.73	0.74	0.70
Valine (%)	0.77	0.73	0.72	0.68	0.67	0.64	0.63	0.60
Leucine (%)	0.53	0.50	0.48	0.46	0.43	0.41	0.40	0.38
Isoleucine (%)	0.68	0.65	0.63	0.60	0.58	0.55	0.53	0.50
Histidine (%)	0.17	0.16	0.15	0.14	0.13	0.12	0.12	0.11
Phenylalanine (%)	0.52	0.49	0.48	0.46	0.44	0.42	0.41	0.39
Vitamins (per kg of diet):								
Vitamin A (I.U)		V		8000				
Vitamin D ₃ (I.U)		Q		3500				
Vitamin E (I.U)			$\mathbf{O}_{\mathbf{A}}$	50				
Vitamin K (I.U)				3				
Thiamin (mg)				2				
Riboflavin (mg)				5				
Pyridoxine (mg)				3				
Pantothenic acid (mg)				10				
Folic acid (mg)				1				
Biotin (µg)				100				
Niacin (mg)				40				
Choline (mg)				400				
Vitamin B_{12} (µg)				10		014		
Trace minerals (per kg of diet):						Ť		
Manganese (mg)				60				
Iron (mg)				30				
Copper (mg)				5				
Zinc (mg)				50				
Iodine (mg)				1				
Selenium (mg)				0.3				

Table 4.1 Diet specifications for layers

SECTION 4.1 Diet specifications and formulations

FEEDING PROGRAMS FOR BROILER CHICKENS

229

CHAPTER

5.1 Diet specifications and feed formulation

G enetic selection for growth rate continues to result in some 30-50 g yearly increase in 42-49 d body weight. There has also been an obvious improvement in feed efficiency and reduction in the incidence of metabolic disorders over the last 5 years, and so these changes have dictated some changes in feed formulation and feed scheduling. The modern broiler chicken is however, able to respond adequately to diets formulated over a vast range of nutrient densities. If there is no concern regarding classical measures of feed efficiency, then the highest nutrient dense diets are not always the most economical.

To a large extent, the ability of the broiler to grow well with a range of diet densities relates to its voracious appetite, and the fact that feed intake seems to be governed by both physical satiety as well as by cues related to specific nutrients. For example, varying the energy level of a broiler diet today has much less of an effect on feed intake, as expected on the basis of appetite being governed by energy requirement. This apparently subtle change in bird appetite has led to increased variability in diet type and diet allocation used by commercial broiler growers. However, as will be discussed later, attempting to 'cheapen' broiler diets through the use of lower protein/amino acid levels, while not having major effects on gross performance, leads to subtle changes in carcass composition. Feed programs may, therefore, vary depending upon the goals of the producer versus the processor.

Another major change in broiler nutrition that has occurred over the last 5 years is the realization that maximizing nutrient intake is not always the most economical situation, at least for certain times in the grow-out period. A time of so-called 'undernutrition', which slows down early growth rate appears to result in reduction in the incidence of metabolic disorders such as Sudden Death Syndrome and the various skeletal abnormalities. A period of slower initial growth, followed by 'compensatory' growth is almost always associated with improved feed efficiency, because less feed is directed towards maintenance. As increasing numbers of broilers are grown in hot climates, an understanding of the bird's response to temperature, humidity and photoperiod is becoming more important.

Diet specifications are shown in Tables 5.1, 5.2 and 5.3. Table 5.1 shows relatively high nutrient dense diets, while Table 5.2 indicates an alternate program for low nutrient dense diets. The choice of such feeding programs is often dictated by strain of broiler, environmental temperature and the relative cost of major nutrients such as energy and protein. Within these feeding programs a common vitamin-mineral premix is used, albeit at different levels, according to bird age. Because birds will eat more of the low vs. high nutrient dense diets, there is potential to reduce the premix nutrient levels by up to 10% for Table 5.2 vs. Table 5.1. When broilers are grown to very heavy weights (63 d+) then there is an advantage to using lower nutrient dense diets (Table 5.3). Tables 5.4 - 5.7 show examples of high nutrient dense diets appropriate for the specifications shown in Table 5.1. There are six variations of diets for the starter, grower, finisher and withdrawal periods. The diets differ in the major cereal used namely corn, sorghum or wheat, and with or without meat meal as another option.

SECTION 5.1 Diet specifications and feed formulations

CHAPTER 5 231

Approximate age	0-18d Starter	19-30d Grower	31-41d Finisher	42d+ Withdrawal
Crude Protein (%)	22	20	18	16
Metabolizable Energy (kcal/kg)	3050	3100	3150	3200
Calcium (%)	0.95	0.92	0.89	0.85
Available Phosphorus (%)	0.45	0.41	0.38	0.36
Sodium (%)	0.22	0.21	0.2	0.2
Methionine (%)	0.5	0.44	0.38	0.36
Methionine + Cystine (%)	0.95	0.88	0.75	0.72
Lysine (%)	1.3	1.15	1.0	0.95
Threonine (%)	0.72	0.62	0.55	0.5
Tryptophan (%)	0.22	0.2	0.18	0.16
Arginine (%)	1.4	1.25	1.1	1.0
Valine (%)	0.85	0.66	0.56	0.5
Leucine (%)	1.4	1.1	0.9	0.8
Isoleucine (%)	0.75	0.65	0.55	0.45
Histidine (%)	0.4	0.32	0.28	0.24
Phenylalanine (%)	0.75	0.68	0.6	0.5
		•		
Vitamins (per kg of diet)	100%	80%	70%	50%
Vitamin A (I.U)		8000		
Vitamin D_3 (I.U)		3500)	
Vitamin E (I.U)		50)	
Vitamin K (I.U)		3		
Thiamin (mg)				
Riboflavin (mg)		5		
Pyridoxine (mg)		4		
Pantothenic acid (mg)		14		
Folic acid (mg)		1		
Biotin (µg)		100		
Niacin (mg)		40		
Choline (mg)		400		
Vitamin B ₁₂ (µg)		12		
Trace minerals (per kg of diet)	100%	80%	70%	50%
Manganese (mg)		70)	
Iron (mg)		20)	
Copper (mg)		8	}	
Zinc (mg)		70)	
Iodine (mg)		0	0.5	
Selenium (mg)		0	0.3	

Table 5.1 High nutrient density diet specifications for broilers

SECTION 5.1 Diet specifications and feed formulations

CHAPTER

FEEDING PROGRAMS FOR BROILER BREEDERS

		гауе
6.1	Diet specifications and feed formulations	. 297
6.2	Breeder pullet feeding programs	. 303
6.3	Prebreeder nutrition	. 311
6.4	Breeder hen feeding programs	. 315
6.5	Factors influencing feed and nutrient intake	. 320
6.6	Breeder male feeding programs	. 334
	Feed efficiency by breeders	
	Nutrition and hatchability	
6.9	Caged breeders	. 342

6.1 Diet specifications and feed formulations

The continuing increase in genetic potential of the broiler chicken poses ever-greater challenges for feeding and managing breeders. Growth and reproductive characteristics are negatively correlated, and because of the relative economic significance of broiler performance within integrated operations, broiler performance is necessarily of primary importance. As appetite and weight for age increase in commercial broilers, so nutrient restriction of young breeders must start at earlier ages and/or be of increasing severity at older ages. The modern breeder hen at 22 weeks of age must be comparable in weight to her offspring at 6 weeks of age. It is, therefore, not too surprising that appetite control of parent flocks is becoming more challenging. Like most other classes of poultry, the absolute requirements of broiler breeders are influenced by both feeding level and diet

nutrient specifications. However, this dual effect means that nutrient intake can be controlled much more closely, and so represents great potential for matching intake to requirement. High-yield breeders are often slightly later maturing (7 - 10 d) than are conventional broiler breeders and have a longer feed clean-up time. In general, managers should not react too quickly in changing the feed allocation or diet as they normally would to circumstances arising with conventional breeders. High-yield roosters also pose some interesting new feed management problems, related to their aggressive behaviour. Tables 6.1 and 6.2 show diet specifications for growing and adult breeders, while Table 6.3 provides examples of corn based diets. Tables 6.4, 6.5 and 6.6 indicate nutrient specifications for adult birds as detailed by the primary breeding companies.

Dogo

297

	Age (wks)	Pullets (g)	Roosters (g)
	1	Ad-lib	Ad-lib
	2	Controlled 25/d	Controlled 30/d
	3	Controlled 30/d	Controlled 40/d
	4	70	80
	5	80	90
4 4 K	6	90	100
	7	100	110
	8	105	115
	9	110	120
	10	115	125
+	11	120	130
	12	125	135
	13	130	140
	14	135	145
	15	140	150
	16	145	155
	17	155	160
	18	165	170
	19	175	180
	20	185	190

Table 6.8 Skip-a-day feed restriction program for pullets and roosters (diet at 2900 kcal/kg)

The skip-a-day feed intake will obviously depend upon nutrient density and environmental conditions, yet these values can be used as guidelines. The concept of feeding to body weight and the regulation of body weight will be discussed more fully in a subsequent section. Table 6.8 indicates a restricted feeding program for both pullets and cockerels to be initiated at 4 weeks of age. Prior to this, 'controlled' feeding should be practiced so as to acclimatize birds to a limited feed intake. Controlled feeding should be adjusted to ensure that birds are cleaning up their feed on a daily basis within 4 – 6 hours. Because different strains of birds have different growth characteristics, then initiation of controlled and restricted feeding must be flexible in order to control body weight. For strains with inherently fast early growth rate, restricted feeding on a daily basis may be necessary as early as 7 - 10 d of age. For other strains, *ad-lib* feeding to 3 - 4 weeks is possible since they have a slow initial growth rate.

With skip-a-day, birds are given these quantities of feed only every other day. The concept behind this program is that with every other day feeding, birds are offered a considerable quantity of feed and this is easier to distribute so that even the smallest most timid bird can get a chance to eat. The usual alternative to skip-aday feeding is feeding restricted quantities every day. For example, at 11 weeks of age, pullets could be fed 60 g each day. The problem with every day feeding is that feed is eaten very quickly and so all birds within a flock may not get ade-

> SECTION 6.2 Breeder pullet feeding programs

FEEDING PROGRAMS FOR TURKEYS

		ago
7.1	Commercial turkeys	345
7.2	Turkey breeder feeding programs	359
	a. Hens	362
	b. Tomsc. Model predicted nutrient needs	365
	c. Model predicted nutrient needs	366

7.1 Commercial turkeys

enetic potential for growth rate of turkeys continues to increase, and standards for male turkeys are now close to 1 kg per week of age at marketing weights of 18 – 20 kg. Unlike most other meat birds, there are distinct differences in the market weights of males and females and so it is accepted that the sexes must be grown separately. Male turkeys are now commonly grown to 18 - 24 weeks of age, and females to 15 - 16 weeks of age. A proportion of females will be sold as whole carcasses, while males are usually further processed in some way. A growing concern with these large turkeys is integrity and quality of the breast meat, since PSE (pale soft exudative) meat, as sometimes occurs in pigs, is now raised as an issue during processing. There has been no major change in carcass fat:protein over the last few years, and so meat quality is the main concern regarding carcass quality. Other carcass defects, such as breast buttons and other skin abnormalities are often a factor of management rather than genetics or nutrition per se.

There still needs to be some flexibility in developing feeding programs for turkeys.

The diet specifications shown in Table 7.1 are general guidelines that can be used for both male and female turkeys. Depending on the marketing age of hens, the diets will perhaps be scheduled a little more quickly and/or the last diet used is a compromise between the Developer #2 and Finisher as shown in Table 7.1. The turkey will grow quite well on a range of diet nutrient densities, although grow-out time will increase and classical feed utilization will decrease, with lower nutrient dense diets. Poorer performance than expected with some high energy diets is often a consequence of not adjusting amino acid levels to account for reduced feed intake. Examples of diets based on corn and soybean meal are shown in Table 7.2 and growth standards are shown in Table 7.3.

Breast muscle deposition is now maximized at around 18 weeks of age in large toms, with deposition of about 65 g/d. Deposition of leg and thigh muscle on the other hand plateaus early, at around 14 weeks of age when there is a maximum daily deposition of about 45 g. Nutrient specifications from the commercial breeding companies are detailed in Tables 7.4 and 7.5.

> SECTION 7.1 Commercial turkeys

CHAPTER

Page

Variable results to such formulations may be related to saturation characteristics of the fat being used. The young poult seems somewhat better than the chick in digesting saturated fatty acids, yet when these predominate, overall digestibility is quite low (Table 7.8).

The saturates C16:0 and C18:0 are fairly well digested when in the presence of a large quantity of unsaturates as occurs in soybean oil. This synergism likely relates to ease of micelle formation, which is a necessary prerequisite of transport from the lumen to the brush border of the epithelium, digestion and subsequent absorption. When there are minimal unsaturates available for micelle formation, then digestion of saturates is exceptionally low, not getting much over 50% by 21 d of age. Since medium chain unsaturates such as C8:0 and C12:0 in ingredients like coconut oil, do not necessarily need prerequisite micelle formation or action of bile salts then they are better absorbed by young birds (Table 7.9).

The digestion of medium chain fatty acids is exceptionally high, even for very young poults, and so these provide a viable alternative to other, possibly more expensive, vegetable oils containing unsaturates. There is also some research suggesting that three week old turkeys metabolize corn with about 10% less efficiency compared to 17 week old birds.

So-called Field Rickets continues to be an ongoing problem at certain farms. Since some farms seem to have greater occurrence than do others, there has always been suspicion of an infectious agent. However, when homogenates from the digesta of affected poults are fed to normal birds, there is no effect on poult liveability or skeletal development. Obviously, dietary levels of calcium, phosphorus and vitamin D₃ come under close scrutiny, but rickets does not seem to be a simple deficiency of any one of these nutrients. There are reports of prevention from using $25(OH)D_3$ rather than vitamin D₃, while other

Table 7.8 Digestibility of C16:0 and C18:0 fatty acids within soybean oil and tallow (%)

	C16:	0	C18:()
	Soybean oil	Tallow	Soybean oil	Tallow
7d	96	65	51	50
21d	99	59	51	36
7d	81	35	73	6
21d	94	54	88	31
	21d 7d	Soybean oil 7d 96 21d 99 7d 81	7d 96 65 21d 99 59 7d 81	Soybean oil Tallow Soybean oil 7d 96 65 51 21d 99 59 51 7d 81 35 73

Adapted from Mossab et al. (2000)

Table 7.9 Fat digestion by young poults

	Lipid digestibility (%)				
Diet	3-5d	6-8d	9-11d		
1. Corn-soy	74 ^b	76 ^b	78 ^b		
2. 1 + 10% AV-fat	69 ^c	72 ^b	71 ^c		
3. $1 + 10\% MCT^1$	90 ^a	92 ^a	90 ^a		

¹Predominantly C8:0 Adapted from Turner et al. (1999)

> SECTION 7.1 Commercial turkeys

CHAPTER

FEEDING PROGRAMS FOR DUCKS & GEESE

.

8.1	Ducks	•	•	•	•	•	•	•	•	•
8.1	Ducks	•	•	•	•	•	•	•	•	•

8.2 Geese

Ducks

he waterfowl industry has been relatively static in terms of overall production and marketing opportunities. There are now very few internationally recognized commercial breeders and so this leads to more standardization of performance. Asia, and particularly China, continue to be major producers of both meat and eggs, while eastern Europe is a major center of goose meat production. Interestingly the growth potential of Pekin type duck strains continues to still outperform that of modern broiler chickens.

Growth rate of meat ducks continues to improve on an annual basis, with males being around 3.2 kg at 42 d. Nutritional programs are aimed at finding a balance between expression of this growth rate vs. control of carcass fatness. Diet specifications for both commercial and breeder ducks are shown in Table 8.1, while examples of corn-soybean diets are shown in Table 8.2.

In formulating diets for meat ducks, care must be taken in adjusting the balance of protein:energy to try and minimize carcass fat deposition. The duck seems to respond in a similar way to protein: energy as previously

described for the broiler chicken and turkey, such that higher protein diets in relation to energy generally result in less carcass fat. The duck seems to be able to digest fiber slightly better than does the chicken, and as such, metabilizable energy values for ducks may be 5-6%greater than corresponding values for chickens - such differences should be considered in setting energy specifications of diets.

Methionine and lysine are likely to be the most limiting amino acids in diets for ducks, and the normal base level of 2 and 5% of crude protein respectively seem applicable to the duck. Growth characteristics of Pekin ducks are shown in Table 8.3.

In developing feeding programs for ducks, carcass composition must be taken into account, especially for late-grower and finisher diets. Table 8.4 outlines the yield and commercial portions of Pekin ducks, while Table 8.5 details the fat and protein deposition in the carcass at 49 d of age. At 49 d of age, abdominal fat represents only some 2% of body weight, which is comparable to that found in chickens – this data confirms that the major problem with fat in the body of the duck is subcutaneous fat depots.

> SECTION 8.1 Ducks

Page

... 371

There seems to be an advantage to feed restriction in growing breeder candidates. Most breeding stock is selected from within commercial flocks at normal market age, and so there is a great challenge to 'hold' birds up to time of sexual maturity. Low nutrient dense holding diets (Table 8.1) fed on a restricted basis according to desired body weight seem to be the only practical method of both delaying sexual maturity and controlling mature body size. Without such control, egg production is often very poor, and fertility of males may be virtually non-existent. Under such conditions, breeder candidates should be fed according to body weight as was previously described for broiler breeder stock (Table 8.9).

CHAPTER 8 **377** FEEDING PROGRAMS FOR DUCKS & GEESE

Restricted feeding of juvenile breeders from 3 – 20 weeks results in greater numbers of settable eggs and some 10% improvement in fertility. As occurs with turkeys, ducklings from young breeders do not grow as well as do those from older birds, and this situation cannot be resolved by supplements to breeder diets (Table 8.1). Heavy breeder strains can also successfully be molted as discussed previously for chickens and turkeys. Table 4.45 gives a general outline of a molting program. As with other species the initial requirement is for loss of 25 - 30% of body weight, and this is achieved by feed withdrawal and reduction in day length. The body reserves of the breeder, and her ovary and oviduct are then re-established through gradual return to ad-lib intake of a breeder diet over a 5 - 6 week period.

Table 8.9 Effect of restricted feeding of juvenile breeders on the performance of breeders from 20 – 60 weeks of age

		Tadias	sustain to 20	-unalis of a mo
				weeks of age
		Ad-lib	75% ad-lib	50% ad-lib
Feed intake (kg)	3-8 wk	7.4	5.6	3.7
	8 – 20 wk	17.3	13.0	8.7
Body wt (kg)	8 wk	3.1	2.8	2.1
	20 wk	4.0	3.4	2.5
	60 wk	4.3	4.1	3.8
Eggs	20 – 60 wk	163	180	187
Fertility (%)	20 – 60 wk	83	92	92

Adapted from Olver (1995)

SECTION 8.1 Ducks

FEEDING PROGRAMS FOR GAME BIRDS, RATITES AND PET BIRDS

Page

385

9.1	Game birds	
	Pheasants, Quail, Guinea fowl3	85
9.2	Ratites	89
9.3	Pet birds and pigeons	92

9.1 Game birds

hile there is some recent information on nutrient requirements of quail and pheasants, there is still a tendency to rely on trends occurring in turkey nutrition. A challenge in designing diets for game birds is varying market needs and especially commercial meat production vs. growing birds for hunting preserves or release. Birds grown for release generally do not need to grow at maximum rate and in many instances this is, in fact, a detriment to flying ability. Nutrient requirements and examples of diets shown in Tables 9.1 and 9.2 relate only to commercial meat production. For release programs, then some type of low nutrient dense holding diet is usually fed for example after 7 - 9 weeks of age with pheasants.

Pheasants – Table 9.1 outlines starter, grower, holding and breeder diet specifications for pheasants. The pheasant starter diet should be fed to 4 weeks of age, followed by the first grower diet to market age or until they are selected for breeding. Diets shown in Table 9.2 are complete diets and need not be supplemented with grain. However, the feeding of 5 to 10% cracked grain can be utilized after

12 weeks of age for birds that are to be released for hunting. The grain portion should be switched to whole grain at 16 weeks of age at which time one half of the feed allotment can be grain. Such a feeding program results in a stronger, hardier bird and one that is more able to forage for itself when released.

The pheasant breeder diet should be fed to the birds starting at least 2 weeks before eggs are expected. Again, this is a complete diet and no supplements should be added to it. Table 9.3 indicates weight gain and feed intake data for male and female pheasants to 18 weeks of age.

Quail – Quail diet specifications are shown in Table 9.4. The quail starter diet should be fed as a complete feed up to 6 weeks of age. At this time, the birds should be placed on the grower diet either until they are marketed as meat or until one week before table or hatching eggs are expected from the females. As mentioned above, a small percentage of scratch grain may be employed. Table 9.5 shows body weight and feed intake data for both male and female quail to 10 weeks of age.

> SECTION 9.1 Game birds

392 CHAPTER 9 FEEDING PROGRAMS FOR GAME BIRDS, RATITES AND PET BIRDS

During the breeding season, the females markedly reduce their feed intake somewhat like a turkey breeder. Thus, it is important that they be in good condition carrying sufficient nutrient reserves, so that quality eggs are produced, leading to potentially healthy offspring. Table 9.11 shows gross composition of eggs from ostriches and emus.

	Weight (g)	Albumen (%)	Yolk (%)	Shell (%)
Ostrich	1200	54	32	14
Emu	600	53	34	13
			-	-

Table 9.11 Ratite egg components

9.3 Pet birds and pigeons

ost pet birds are fed diets based on whole seeds rather than complete feeds as pellets. Feeding birds along the guidelines outlined in Table 9.12 would seem more logical from a nutritional viewpoint, although nutrition *per se* does not always seem to be the major factor involved in diet selection by owners.

Use of complete pelleted feeds has been met with resistance by owners, and not all species of bird readily accept conventional pellets. However, by using extruded pellets and incorporation of color/taste/smell additives both the owner and bird can be coaxed into using such complete feeds. There is increased demand for hand-reared birds due to better behavioral disposition and the potential for a ban in trade in exotic species. Consequently there is increased demand for information on diets for hand feeding of newly hatched birds. While many such hatchlings are fed on baby food/peanut butter mixes, a gruel formulated to the specifications shown in Table 9.12, and composed of more conventional ingredients, should prove more economical for large-scale operations. However, due to the monetary value of many of these pet birds, economics of nutrition is not always a major factor, especially when one considers the actual feed intake of these very small birds.

	Bud	Budgie		Parrots		
	Young	Adult	Young	Adult	feeding	
Crude Protein (%)	23.0	15.0	21.0	14.0	26.0	
Metabolizable Energy (kcal/kg)	3000	2900	2900	2800	3200	
Crude fat (%)	5.0	5.0	5.0	4.0	10.0	
Crude fiber (%)	3.0	3.0	4.0	3.0	3.0	
Calcium (%)	1.2	1.0	1.0	0.9	1.4	
Av Phosphorus (%)	0.45	0.45	0.45	0.4	0.7	
Sodium (%)	0.17	0.17	0.16	0.14	0.18	
Methionine (%)	0.50	0.30	0.43	0.25	0.60	
Methionine + Cystine (%)	0.92	0.61	1.00	0.52	1.20	
Lysine (%)	1.30	0.75	1.20	0.68	1.40	

Table 9.12 Diet specifications for pet birds

Mineral-vitamin premix as per turkey with 200 mg/kg Vit. C

SECTION 9.3 Pet birds and pigeons

INDEX

A		Body fat, layer	183
Aflatoxin	98	Body weight, layer	170
Air movement, chilling	184	Bone:	
Alfalfa	67	ash	280
Alimet"	76	breakage, layers	219
Alimet", egg size	198, 200	medullary	194
Alkaloids	106	Botulism	107
Alkalosis	185	Breeder:	
Alkalosis, shell strength	186	ducks	377
Amino acid:	100	geese	382
analyses	79	Broiler:	
breeders	302	ascites	273
ducks	375	breed specifications	301
analyses breeders ducks dye-binding geese	83	carcass composition	281
geese	375	chick weight	259
layers	184	diet dilution	251
synthetics	74	diet energy	247, 248
Antibiotics	88, 271	efficiency	260
Anticoccidials	86	energy balance	263
Antifungals	90	environment temperature:	261
Antioxidant	206	electrolytes	265
Arginine	75	feed change	265
Ascites:	251, 253	protein	265
broiler	273	feathering	285
feed restriction	276	feed:	
Assay:	270	allocation	240-242
crude protein	78	efficiency	259
fat	78	intake	239
gizzard erosion	83	intake, temperature	263
gossypol	84	withdrawal	255
metabolizable energy	80	feeding programs	238
rice-hull	85	growth:	
tannin	84	30 yr pattern	249
Autointoxication	106	breeder age	258
	100	efficiency	257
В		egg weight	258
	100	egg weight restriction	248, 251
Bacterial toxins	106	temperature	264
Bakery meal	28	water system	266
Barley	21	gut health	270
Beak trimming	215	heavy birds	233
Bioplex" minerals	293	high nutrient density	231
Biotin, eggs, turkey breeder	364	lighting	267, 269
Blood glucose	281	low nutrient density	232, 246
Blood meal	68		

maintenance needs	250	С	
mash diets	255	Cage layer fatigue	217
minerals	244, 256	Cage systems, breeder	340
necrotic enteritis	272	Calcium:	69
nutrient management	289	balance	152
nutrition	230	balance, breeders	333
prestarter	244	balance, layer	195
SDS	276	balance, pullet	152
skeletal disorders	277	bone composition	218
skin integrity	285	breeders	312
spiking mortality	281	eggshell	193
stock density	257	layers	184
strain specific diets	243	manure moisture	153
vitamin needs	244	metabolism, breeder	312
vitamins	244, 256	prelay	149
Broiler breeder:	297	retention	151
cage systems	340	solubility	85
calcium metabolism	312	water intake	153
challenge feeding	321	Canola:	155
choking	309	meal	37
coccidiosis	308	seed	67
diet ME	318	tannins	104
egg production	320	Carcass composition:	101
egg weight	314	broilers	281
eggshell quality	332	chemical composition	283
energy balance	316, 318, 329	components	282
environmental temperature	330	ducks	374
feed:		fat profile	284
clean-up time	327	flaxseed	285
efficiency	337	turkey	357
grills	335	weights	283
program	305, 315, 336	Cardiomyopathy, turkey	352
reduction	326	Carotenoids	206
restriction	304	Challenge feeding, breeders	321
fertility	338	Chelates, mineral	73
growth standard	303	Choking, breeders	309
hatchability	314, 338, 340	Cholesterol, copper, yolk	211
prebreeder	311	Cholesterol, egg	210
protein needs	319	Cinnamamide	97
rooster feeding	308, 334	Cobalt	72
semen production	339	Coccidiosis, breeders	308
sperm penetration	339	Coccidiostats	86
temperature	328	Coconut oil	59
uniformity	304	Collagen	288
vitamin deficiency	340	Compensatory growth	250
water management	309, 331	Competitive exclusion	91, 271
weight adjustment	307	Conjugated linoleic acid	60
wind chill	332	Copper:	72
Bulk density	77		

turkey	355
yolk cholesterol	211
Corn:	11
gluten meal	40
phosphorus	224
Cottonseed	105
Cottonseed meal	42
Crotalaria	108
Crude protein assay	78
Cyanides	99
Cyclopropenoid fatty acids	105

		breeder
D		vitamin D3
Dehydration	117	Electrolyte:
DHA – carcass	284	balance
DHA – egg composition	208	feed ingredients
Diet:		Energy:
dilution, broiler	251	balance, breeders
energy, broilers	247, 248	balance, temperature
layer	164	broilers, diet
prelay	129	efficiency
pullet	126	intake prediction
pheasant	386	response, egg production
turkey breeder	360	Enzymes – additives
turkey	346	Enzymes – NSP
Digestion, lysine, bird age	245	EPA – carcass
Ducks:	371	Ergot
amino acid needs	375	Expanders
breeder	377	Extrusion
carcass composition	374	
diet specifications	372	F
growth rate	373	Fat:
0		
E		digestion – turkey
		assay digestion – turkey hydrogenation iodine titre oxidation poultry
Egg: cholesterol	210	iodine titre
	203	oxidation
composition	203	poultry
composition, DHA		quality
deposition, lutein minerals	206	variable AME
	204	Fatty acid profiles
omega-3	207, 210	

320

176

175

size:

manipulation maturity

methionine taint

weight, breeder

breeder

Fatty Liver Syndrome (FLS)

Feather cover – layers

Feathering, broiler Feathering, keratin

Feather meal

vitamins

Egg, yolk colour

calcium quality:

Eggshell:

production, breeder

production, energy response

production, curve

198

154

138 198, 200

314

205

193

193

58, 62

216

181

52

285

286

37, 102

204, 212, 213

316, 318, 329

Feed		Glycine
allocation, broiler	240-242	Gossypol
broiler breeder	305, 336	Gossypol, ass
challenge, breeder	321	Groundnut
clean-up time	327	Growth prom
efficiency, broiler breeder	337	Growth rate:
efficiency, broiler	259	ducks
grills, broiler breeder	335	geese
ingredients, electrolytes	187	ratites
intake:		Growth restri
broiler	239	Growth, com
layer	171, 172	Growth, stand
methionine deficiency	202	Guinea fowl
turkey breeder	364	Gut health –
manufacture	110	
production	7	Н
programs, breeder	315	Halofuginone
reduction, breeder	326	Hatchability
restriction:		Heat distress,
ascites	276	Heat stress
broiler breeder	304	Heat stress, s
pullets	160	Humidity
texture	183, 192	Hy-D"
texture, turkeys	349	Hysteria, laye
withdrawal, broiler	255	riysteria, laye
Feeding programs, broiler	238	
Fertility, broiler breeder	338	
Fish meal	54	lodine
Fish oils	59, 208	lodine, titre, 1
Flavouring agents	96	lonophores
Flax	207	Iron
Flaxseed	44	
Flaxseed, carcass composition	285	K
FLS (Fatty Liver Syndrome)	216	Keratin
Flushing Syndrome, turkey	355	Knockdown,
Fron choice feeding	17	

G

Free choice feeding

Game birds	385
Geese:	378
amino acid needs	375
breeder	382
diet specifications	379
growth rate	380
Gizzard erosion	57
Gizzard erosion, assay	83
Glucosinolates	101

Glycine	75
Gossypol	42, 105
Gossypol, assay	84
Groundnut	67
Growth promoters	88
Growth rate:	
ducks	373
geese	380
ratites	390
Growth restriction, broiler	248, 251
Growth, compensatory	250
Growth, standard, turkey	347
Guinea fowl	388
Gut health – broiler	270

••	
Halofuginone	287
Hatchability	314, 338, 340
Heat distress, layers	177, 189
Heat stress	261
Heat stress, strategies	267
Humidity	178
Hy-D"	197, 279
Hysteria, layers	214

lodine	73
lodine, titre, fat	84
Ionophores	87
Iron	73

Κ	0.0
Keratin	286
Knockdown	turkey 355

L

17

L	
Lactobacilli	91
Lathyrism	104
Layer:	
amino acids	184
body fat	183
body weight	170
bone breakage	219
calcium	184
calcium, balance	195
cannibalism, protein	173

diets	164	nitrog
energy balance	174, 179	Mash diet
feather cover	181	Maturity, e
feathering, protein	173	ME ingred
feed intake	171, 172	Meal:
feeding activity	182	bakery
heat distress	177, 189	blood
hysteria	214	canola
low energy diet	172	corn g
molting	220	cotton
nutrient needs	171, 182	feathe
phosphorus	185	fish
protein	184	meat
vitamin D3	185	poultr
water balance	188	soybe
Lectins	32	Medullary
Lighting:		Metaboliz
broilers	267, 269	Methionin
maturity	159	deficie
mortality, broiler	268	egg siz
pullets	147, 157	needs,
step down	159	Milo
Limestone	69	Mineral:
Limestone, solubility	195	Biople
Linoleic acid, conjugated	60	broile
Linoleic acid, egg size	201	eggs
Linolenic acid	44	requir
Lipase	94	Model pre
Liver fat, layer	217	Molasses
Low energy layer diets	172	Mold inhi
Lupins	68	Molting, la
Lutein, egg deposition	206	Molting, s
Lysine digestion, bird age	245	Monensin
Lysine	75	Mortality,
		Mycotoxir
Μ		
Magnesium	73, 214	N
Maintenance needs, broiler	250	Near Infra
Management, manure	148	Necrotic e
Manganese	73, 280	Nicarbazi
Mannanoligosaccharides	89	Nitrofuran
Manure:		NSP enzy
Composition:	222	Nutrient n
broilers	289	
and a smaller	202	0

293

225

148 153

nitrogen losses	223
Aash diets, broilers	255
Aaturity, egg size	138
AE ingredients, ratites	390
Meal:	
bakery	28
blood	68
canola	37
corn gluten	40
cottonseed	42
feather	52
fish	54
meat	47
poultry by-product	50
soybean	31
Aedullary bone	194
Aetabolizable energy, assay	80
Aethionine:	75, 191
deficiency, feed intake	202
egg size	198, 200
needs, layers	203
Ailo	19
Aineral:	
Bioplex"	293
broilers	244, 256
eggs	204
requirements, turkeys	348
Model prediction, turkey breeder	365
Aolasses	66, 182
Mold inhibitors	90
Molting, layers	220
Molting, schedule, turkey breeder	365
Monensin	86
Mortality, broiler lighting	268
Aycotoxins	98
N O	
Near Infra Red Analysis (NIRA)	80
Necrotic enteritis, broiler	272
· · · · · · · · · · · · · · · · · · ·	

N		
ear Infra Red Analysi	s (NIRA)	80
ecrotic enteritis, broi	ler	272
icarbazin		107, 212
itrofurans		107
SP enzymes		93
utrient management		148, 222, 290

0

Oats	65
Ochratoxin	99

minerals

moisture, calcium

management

disposal

Odaur cantral	97		175
Odour control	97 97	egg, energy response	175
Odour, yucca		feed	7
Oil:	57	world	4, 6
coconut	59	Prolapse	215
fish	59, 208, 284	Protein:	
palm	59	dye-binding	83
vegetable	59	layer	184
Oily Bird Syndrome (OBS)	288	layer, feathering	173
Oligosaccharides	33	solubility	32, 35, 82
Omega-3, carcass	284	Proximate analysis	78
Omega-3, eggs	207, 210	Pullet:	
Ostrich	389	body weight	132, 136, 145
Ostrich, carcass composition	391	calcium balance	152
Oxidation – fat	61	diets	126
Oystershell	•69	feed:	
		intake	136
P • • • •		management	137
Palm oil	50	restriction	160
	12	feeding examples	144
Particle size		growth, temperature	142
Peas Pallat hindara		lighting	147, 157
Pellet binders	86	 maturity 	138
Pelleting	112	nutrient intake	141
PEMS, turkey	350	prelay, body weight	153
Pet birds	392	prelay, nutrition	149
Phase feeding	190	programs	123
Pheasant	385	requirements	123
Pheasant, diet specification	386		124, 123
Phosphorus:	69	strain requirements	
corn, soybeans	224	vitamins	133, 137
layers	185	water intake	153
manure	291		
Phytase	94	Q	
Pigeon	392	Quail	385
Pigments	96	Quail, Japanese R Rancidity Ratites: diet specifications	388
Poult Early Mortality Syndrome	350		
Poult, viability, turkey	349	R	
Poultry by-product meal	50	Rancidity	61
Poultry fat	59	Railciuity	220
Prebiotics	91	Ratites:	309
Prelay diets	129	diet specifications	390
Prelay, nutrition, pullets	149	growth rate	390
Premixes	110	ME ingredients	390
Prepause nutrition	155	Restaurant grease	60
Prestarter diets, broiler	244	Rice:	23
Probiotics	91	bran	30
Production:	דכ	by-products	29
	176	hull assay	85
egg, curve	176		

	252 254		220
Roasters	252, 254	breeder	328
Rooster feeding	334	broiler growth	264
Rooster, feeder	308, 334	energy balance	263
Rye	65	environment, broiler	261
		feed intake, breeder	330
S		feed intake, broiler	263
Safflower	68	pullet growth	142
Salmonella	48	turkey	354
Salt	71	Thermal cooking	113
SDS	251, 253	Threonine	75
Selenium	73	Tibial dyschondroplasia	277, 280
Semen, production, breeder	339	Toxic seeds	107
Serine	281	Toxin, T2	286
Sesame	68	Toxins, bacterial	106
Shell quality	193	Trace minerals	71
Shell strength, alkalosis	186	Trans fatty acids	65
Sinapine	37	Tricothecenes	99
Skeletal disorders:	277	Triticale	66
broilers	.277	Trypsin inhibitor	32, 45
tibia	277, 280	Tryptophan, hysteria	215
vitamin D3	279	Tryptophan	75
Skin integrity:		Turkey breeder:	359
broiler	285, 287	Biotin, eggs	364
collagen	287	diet specifications	360
halofuginone	287	feed intake	364
Soap formation	64	model prediction	366
Soapstock	60	molting schedule	363, 365
Sodium	69	Turkey	345
Sodium, bicarbonate	71, 187	broiler	356
Sorghum tannins	103	carcass composition	357
Soybean	35	cardiomyopathy	352
Soybean, meal	31	copper	355
Soybean, phosphorus	224	diet specifications	346
Sperm penetration, breeder	339	fat digestion	351
Spiking mortality	281	feed texture	349
Strain comparison, turkey	348	Flushing Syndrome	355
Sudden Death Syndrome	251, 253, 276	growth standard	347
Sulfonamides	107	heavy	352
Sulfur-canola	37	knockdown	355
		mineral requirements	348
Т		PEMS	350
• Tallow	57	poult viability	349
Tannin	102	strain comparison	348
	84	temperature	354
Tannin, assay Tomporaturo:	04	vitamin requirements	348
Temperature:			

			272
U		pH	273
Uniformity, breeders	304	pullet, intake	153
Urease	32	quality	119
Urease, testing	82	restriction	118
Urolithiasis	156	system, broiler growth	266
		temperature	118
V		Weight adjustment, breeder	307
Vanadium	214	Weight, pullet prelay	153
Vegetable oil	59	Wheat:	15
Vitamin:	55	bran	25
broilers	244, 256	by-products	25
deficiency, breeder	340	screenings	26
	204, 212, 213	shorts	25
eggs premixes	110	Wind chill, breeders	332
requirements, turkeys	348	World production	4,6
stability	112, 114	Worming compounds	97
Vitamin A	279		
Vitamin C	185, 287	X	
Vitamin D3:	278	Xanthophyll:	96
CLF	219	yolk colour	205
	196		
eggshell quality	185	Y	
layers Vitamin E	216	Yeasts	92
VITATITITE	210		92 212
14/		Yolk mottling Yolk sac	244
W			244 97
Water:	115, 188	Yucca, odour	97
balance:	117		
layers	188	L	
breeder	309, 331	Zearalenone	100
consumption	116	Zinc	73, 279
intake, calcium effect	153	Zinc, molting	221
		`O, 'O	A
			•
		°0, '0, '0, '0, '0, '0, '0, '0, '0, '0, '	