The Mycotoxin Blue Book

CONTEXT

Edited by Duarte Diaz
CONTENTS

1. **Sampling feeds for mycotoxin analysis**
 Thomas B. Whitaker, Andrew B. Slate and Anders Sture Johansson
 US Department of Agriculture, Agricultural Research Service, North Carolina State University, Raleigh, North Carolina, USA

2. **Mycotoxins: their effects in poultry and some practical solutions**
 G. Devegowda and T.N.K. Murthy
 Division of Animal Sciences, College of Veterinary Medicine, Bangalore, India

3. **Effects of mycotoxins in horses**
 Kyle E. Newman¹ and Susan L. Raymond²
 ¹Venture Laboratories, Lexington, Kentucky, USA; ²Equine Guelph, University of Guelph, Ontario, Canada

4. **Effects of mycotoxins on domestic pet species**
 Josef Böhm and Ebrahim Razzazi-Fazeli
 Institute of Nutrition, Department of Veterinary Public Health, University of Veterinary Medicine, Vienna, Austria

5. **Effects of mycotoxins on antioxidant status and immunity**
 ¹Peter F. Surai and ²Julia. E. Dvorska
 ¹Avian Science Research Centre, Scottish Agricultural College, Auchincruive, Ayr, Scotland, UK and ²Sumy National Agrarian University, Sumy, Ukraine

6. **Mycotoxins in aquaculture**
 Bruce Manning
 Thad Cochran National Warmwater Aquaculture Center, Mississippi State University, Stoneville, Mississippi, USA

7. **Principles and applications of mycotoxin analysis**
 Keith A. Scudamore
 KAS Mycotoxins, Taplow, Maidenhead, Berkshire, UK

8. **Mycotoxins in the human food chain**
 Fabio Galvano¹, Alberto Ritieni², Gianfranco Piva³ and Amedeo Pietri³
 ¹Department of Agro-forestry and Environmental Science and Technology, Mediterranean University of Reggio Calabria, Italy; ²Department of Food Science, Federico II University, Napoli, Italy; ³Institute of Food Science and Nutrition, Catholic University of the Sacred Heart, Piacenza, Italy

vii
Table of contents

9. **Mould growth and mycotoxin production** 225
 Elizabeth Santin
 Universidade Federal do Paraná, Curitiba, Paraná, Brazil

10. **Current concepts in mycotoxicoses in swine** 235
 Trevor K. Smith, Gabriel Diaz and H.V.L.N. Swamy
 Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada

11. **Mycotoxins in forages** 249
 J. Fink-Gremmels
 Utrecht University, Faculty of Veterinary Medicine, Utrecht, The Netherlands

12. **Mycotoxin interactions** 269
 Roger D. Wyatt
 Department of Poultry Science, University of Georgia, Athens, Georgia, USA

13. **Mycotoxins: metabolism, mechanisms and biochemical markers** 279
 Ronald T. Riley¹ and James Pestka²
 ¹*Toxicology and Mycotoxin Research Unit, R.B. Russell Research Center, USDA-ARS, Athens, Georgia, USA*; ²*Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA*

14. **Effects of mycotoxins in ruminants** 295
 Jean-Pierre Jouany¹ and Duarte E. Diaz²
 ¹*INRA, Herbivore Research Unit, Clermont-Theix, France*; ²*University of Puerto Rico, Mayagüez, Puerto Rico*

15. **Mycotoxin sequestering agents: practical tools for the neutralisation of mycotoxins** 323
 Duarte E. Diaz¹ and Trevor K. Smith²
 ¹*University of Puerto Rico, Mayagüez, Puerto Rico*; ²*University of Guelph, Guelph, Ontario, Canada*

Index 341
The Food and Agriculture Organization of the United Nations stated, in a recent report, that at least 99 countries around the world, representing 87% of the world’s inhabitants, had some type of mycotoxin guidelines for foodstuffs and/or feedstuffs. Such worldwide interest is also reflected in the great volume of research published since the discovery of aflatoxin B₁ as the causative agent in Turkey X disease in the early 1960s. Due to the ubiquitous nature of mycotoxin-producing moulds and our general inability to prevent many of the conditions favorable for their growth and mycotoxin production, mycotoxin contamination of foods and feeds is an inevitable part of modern agriculture. The increasing irregularity of meteorological events related to the ever-changing global climate will further challenge us in the years to come. Although the true impact of moulds and mycotoxins is impossible to measure, the risks associated with their presence is well established.

The main aim of this book is to highlight the practical aspects of mycotoxin contamination. Careful attention is given to the understanding of toxicity and its impact on performance of animals exposed to mycotoxin contaminated feedstuffs. Chapters within this volume will also discuss the basis of proper feedstuffs sampling and the principles of mycotoxin analysis. Additionally, this book will attempt to review concepts of mould growth and mycotoxin production, mycotoxin contamination of forages, and the contamination of human foods. Other chapters will focus on the mechanisms of toxicity, and on the specific effects of mycotoxins on antioxidant status. Therefore information provided in this book will be useful to professionals associated with the fields of veterinary and medical sciences, biotechnology, physiology, immunology, food technology, toxicology and nutrition, as well as students interested in this rapidly-developing field.

The Mycotoxin Blue Book owes its existence to the labour and commitment of many contributors to whom I am indeed grateful. I want to particularly acknowledge Professor Lon Whitlow for his support and encouragement.

Duarte E. Diaz
Mycotoxins are toxic and/or carcinogenic compounds produced by various fungal species that grow on various agricultural commodities (Cullen and Newberne, 1994). There are many different mycotoxins (CAST, 2003) and a partial list is shown in Table 1.

Table 1. Partial listing of several mycotoxins produced by various fungi.

- Aflatoxins
- Fumonisins
- Ochratoxin A
- Deoxynivalenol
- Patulin
- Zearalenone

Commodities can be contaminated either in the field or in storage. Pre- and post-harvest strategies to prevent crop contamination include yearly crop rotations, irrigation in hot and dry weather, use of pesticides to reduce the insect population, drying crops to a safe moisture level, and providing protective storage (Phillips et al., 1994). Because mycotoxins are toxic and carcinogenic in animals, many countries regulate the maximum level that can occur in foods and feeds. Most regulations are concerned with controlling aflatoxin because it is considered the most toxic and carcinogenic of the naturally occurring mycotoxins. A recent FAO/WHO survey indicated that almost 100 countries regulate aflatoxin in foods and feeds (FAO, 1995). However, maximum levels differ widely from country to country because of a lack of agreement on what constitutes a safe maximum level for humans. Some of the maximum levels found in the FAO/WHO survey for aflatoxin are shown below in Table 2 (FAO, 1995).

Table 2. Examples of aflatoxin legal limits found in various countries.

<table>
<thead>
<tr>
<th>Country</th>
<th>Aflatoxin B₁ (ppb)</th>
<th>Total aflatoxin (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>US</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>EU</td>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>Australia</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Canada</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>Egypt</td>
<td>Maize</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Peanuts</td>
<td>10</td>
</tr>
<tr>
<td>Nigeria</td>
<td></td>
<td>20</td>
</tr>
<tr>
<td>Philippines</td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>South Africa</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It is important to be able to detect and quantify the mycotoxin concentration in foods and feeds destined for human and animal consumption. In research, quality assurance, and regulatory activities, correct decisions concerning the fate of commercial lots can only be made if the mycotoxin concentration in the lot can be determined with a high degree of accuracy and precision. The mycotoxin concentration of a bulk lot is usually estimated by measuring the mycotoxin concentration...
Introduction

During the past few decades there has been a steady increase in global production of poultry meat and eggs. Although the high nutritive value of eggs and poultry meat has resulted in increasing demand, food quality and safety factors are becoming increasingly significant in determining market value of poultry products. As mycotoxins are one of the major factors suppressing poultry productivity and also product quality, control of their impact is critical.

According to the United Nation's Food and Agriculture Organization (FAO), approximately 25% of the world’s grain supply is contaminated with mycotoxins. The greatest economic impact of mycotoxin contamination is felt by crop and poultry producers, as well as food and feed producers (CAST, 2003). Worldwide, the economic losses due to mycotoxins in poultry feeds can be as much as several hundred million USD annually. The adverse effects of mycotoxin-contaminated diets on performance range from undetectable to devastating in terms of reduced egg production in layers and breeders, and growth depression in broilers, turkeys, ducks etc.

The threat of mycotoxins to humans was described during World War II when Russian soldiers suffered severe dermal necrosis, haemorrhage and destruction of bone marrow after eating mouldy grains (*Fusarium*-contaminated). However, it was not until 1960, when the entire turkey population of Britain was decimated by a fatal liver disease called **Turkey X Disease**, that the scientific community recognized the negative effects associated with mycotoxins. British agriculture officials later traced the source of the outbreak to aflatoxin in a shipment of peanut (groundnut) meal that originated in Brazil.

Mycotoxins of importance in poultry are mainly produced by fungi of the genera *Aspergillus, Fusarium* and *Penicillium* either pre-harvest, during harvest, or in storage or during feed processing whenever conditions are favorable. No region of the world escapes these silent killers; and their negative impact on poultry productivity and human health is enormous.

Geographic distribution of mycotoxins

At the First Food and Agricultural Organization (FAO) - World Health Organization (WHO) - United Nations Environment Programme (UNEP) Conference on mycotoxins in 1977, a review was presented on the occurrence of mycotoxins in various commodities throughout the world. Only seven mycotoxins were reported to occur significantly in naturally contaminated foods and feeds: aflatoxins, ochratoxin A, patulin, zearalenone, trichothecenes, citrinin and penicillic acid.
Poor general resistance to disease and increased mortality are also observed in birds fed OTA-contaminated diets. Young chicks in the initial few weeks of life are highly sensitive. Though older birds are less sensitive, laying hens show reduced egg production in a dose-related fashion with a characteristic yellow staining of egg shells. Higher levels of OTA result in poor egg shell quality and higher incidence of eggs with blood spots (Shirley and Tohala, 1983).

Decreased embryo viability and poor hatchability are observed in eggs from hens fed OTA-contaminated feed. Chicks from such eggs continue to perform below average. Delayed sexual maturity is commonly seen in chicks from hens exposed to OTA.

Since the main consumer of poultry products are humans, it becomes relevant to also view the problem of mycotoxin residues in poultry products from a human health standpoint (Table 12).

Table 12. Occurrence of mycotoxin residues in poultry products.

<table>
<thead>
<tr>
<th>Mycotoxin</th>
<th>Poultry Carry over in production</th>
<th>Meat and eggs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aflatoxin B</td>
<td>+</td>
<td>Liver</td>
</tr>
<tr>
<td>Ochratoxin A</td>
<td>+</td>
<td>Hatching eggs</td>
</tr>
<tr>
<td>Cyclopiazonic acid</td>
<td>+</td>
<td>Meat and eggs</td>
</tr>
<tr>
<td>Deoxynivalenol</td>
<td>+</td>
<td>Hatching eggs</td>
</tr>
<tr>
<td>Zearalenone</td>
<td>+</td>
<td>Eggs</td>
</tr>
<tr>
<td>T-2 toxin</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Diacetoxyscirenol</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fusarochromane</td>
<td>+</td>
<td>Hatching eggs</td>
</tr>
<tr>
<td>Aurofusarin</td>
<td>+</td>
<td>Eggs</td>
</tr>
</tbody>
</table>

TURKEYS

High levels of OTA can have devastating effects on turkeys. Table 13 shows the impact of ochratoxicosis on a commercial turkey farm (Hamilton et al., 1982). The farm lost over 50% of the flock in just nine days. The level of ochratoxin in the feed was very high; and it was reported that even wild birds foraging on spilled feed were dying.

Table 13. Turkey mortality during an outbreak of ochratoxicosis.

<table>
<thead>
<tr>
<th>Age (Days)</th>
<th>Mortality (Number of poults)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>57</td>
</tr>
<tr>
<td>9</td>
<td>586</td>
</tr>
<tr>
<td>10</td>
<td>246</td>
</tr>
<tr>
<td>11</td>
<td>983</td>
</tr>
<tr>
<td>12</td>
<td>863</td>
</tr>
<tr>
<td>13</td>
<td>370</td>
</tr>
<tr>
<td>14</td>
<td>547</td>
</tr>
<tr>
<td>15</td>
<td>1033</td>
</tr>
<tr>
<td>16</td>
<td>826</td>
</tr>
</tbody>
</table>

Hamilton et al., 1982

IMMUNE STATUS

Ochratoxin is known to cause regression and cellular depletion (lymphocytes) of major lymphoid organs, significantly affecting cellular immunity in poultry. A lesser secondary suppression of humoral immunity with lower circulating immunoglobulins is observed in ochratoxicosis as a result of depletion of immune system effector cells, especially the macrophages.

SIGNIFICANCE OF THE PROBLEM

Ochratoxin has been detected in a number of foods and feeds in various countries (Van Egmond and Spijers, 1994). A recent survey, where 1431 samples of wheat, barley, rye, oats and bran were analysed for OTA in Denmark (Hohler, 1999), showed that 40% of feed samples were contaminated with OTA. Among the commodities analysed, bran products had higher OTA levels than cereal kernels.

RESIDUES

Ochratoxin A, CPA and citrinin bind to plasma proteins once absorbed, resulting in accumulation and a prolonged residence
Until recently, studies investigating the effects of mycotoxins on horses were limited to trials with few animals or depended on extrapolations based on data from other species (the pig or ruminant being the most obvious choices). However, a unique challenge is presented when attempting to use non-equine data effectively since the horse is comparable to the ruminant in that it is a forage-grazing animal but has a gastrointestinal tract more closely related to the pig with the addition of a hindgut fermentation process. The nature of the horse farm also makes the equine quite different from other livestock species. These other species are bred for growth and meat yield and have a relatively short lifespan while in most cases the horse is bred for athletic performance, conformation, temperament, beauty and/or durability.

Limiting values or safe concentrations of specific mycotoxins are, for the most part, unknown for the horse. Historically, mycotoxins were identified by their ability to produce severe, overt disease syndromes in animals as a result of relatively high intakes of mycotoxins, however low levels of exposure over long periods can elicit chronic or subchronic toxicological manifestations. Factors influencing susceptibility to mycotoxins include disease, heat stress, marginal nutritional profile, drug interactions, presence of multiple toxins, crowding, age and reproductive status. The intent of this chapter is to inform the reader of available data on mycotoxins and horses or the possible implications of toxins for the horse in the absence of data.

Moulds and production of mycotoxins

The occurrence of mould and mycotoxins in food and animal feed is a problem of major concern internationally (Wood, 1992). Mycotoxin production can occur when favourable conditions allow fungi to grow on crops in the field, at harvest, in storage or during the processing of feed (Palmgren and Lee, 1986). Mycotoxins are the products of secondary fungal metabolism although not all fungi produce mycotoxins. Environmental
Introduction

Domestic pets include all animals commonly cared for in households, such as cats, dogs, pet birds, rabbits, guinea pigs, and mink. Over the last decade, the importance of domestic pets in developed countries has grown dramatically. As an example from the EU, more than 28% of households in Austria keep cats, followed by dogs in 16%, caged birds in 5%, aquarium fish in 4%, rabbits in 2.5%, guinea pigs in 2%, and hamsters and turtles are kept in 1% of households. The adverse effects of fungal toxins have been well documented in many species, particularly farm animals. However, only a few papers address mycotoxicoses in pets. Puschner (2002) has reviewed the clinical and pathological effects of some mycotoxins on pet animals. In addition, Devegowda (2000) and Bird (2000) have reported on the relevance of mycotoxins in pet foods. This general lack of information makes it difficult to assess the relevance of mycotoxins to pet health.

In the cases of aflatoxins, penitrem A, roquefortine, and ochratoxins in dogs, descriptions of feed-induced natural mycotoxicoses have been reported. Experimentally, the effects of trichothecenes, patulin, penicillic acid, moniliformin, and cyclopiazonic acid have been studied in dogs, cats, rabbits, and mink. For the most toxic compound within the aflatoxin family, aflatoxin B₁, maximum regulatory limits in the EU have been defined as 10 µg/kg in complete feedstuffs (Council Directive 1999/29/EC). The US Food and Drug Administration has established only an action level (FDA Regulatory Guidance for Toxins and Contaminants) of 20 ppb for corn, peanut products, cottonseed meal, and other animal feeds and feed ingredients.

This chapter provides an overview of the toxicological effects of mycotoxins on domestic pets, as well as on the occurrence of mycotoxins in pet foods. Different mycotoxins and their relevance, as well as clinical signs of their mycotoxicosis, are described.

Aflatoxins

Aflatoxins are toxic secondary metabolites of Aspergillus spp., such as A. parasiticus and A. flavus. Aflatoxins have been shown to be the cause of toxicities in livestock, domestic animals, and humans throughout the world. Due to their high toxicity and carcinogenicity, aflatoxins have received greater attention than other mycotoxins. In the early 1960s, when more than 100,000 young turkeys in England died as the result of an apparently new disease, later named Turkey X disease, aflatoxicosis was soon found to be the cause of death.

In the 1950s, before Turkey X disease was reported, epizootics of fatal hepatitis in dogs
Effects of mycotoxins on antioxidant systems

A delicate balance between antioxidants and pro-oxidants in the body in general and specifically in the cell is responsible for regulation of various metabolic pathways leading to maintenance of immuno-competence, growth and development and protection against stress conditions associated with commercial poultry production (Surai and Dvorska, 2001). This balance can be regulated by dietary antioxidants, including vitamin E (Surai et al., 1999), carotenoids (Surai and Speake, 1998; Surai et al., 2001) and selenium (Se) (Surai, 2000). On the other hand, nutritional stress factors have a negative impact on this antioxidant/pro-oxidant balance. In this respect mycotoxins are considered to be among the most important feed-borne stress factors.

It is not clear at present whether mycotoxins stimulate lipid peroxidation directly by enhancing free radical production or if the increased tissue susceptibility to lipid peroxidation is a result of a compromised antioxidant system. It seems likely that both processes are at work. In most cases lipid peroxidation in tissues caused by mycotoxins was associated with decreased concentrations of natural antioxidants. For example, in an experiment with quail, levels of the primary liver antioxidants (α−tocopherol, γ−tocopherol, carotenoids and ascorbic acid) were significantly decreased as a result of T-2 toxin consumption (Dvorska and Surai, 2001; Figure 1).

Similarly, the presence of T-2 toxin in the diet decreased the concentration of α−tocopherol in the chicken liver (Hoehler and Marquardt, 1996). T-2 toxin consistently depressed concentrations of vitamin E in chicken plasma (Coffin and Combs, 1981). Addition of micelle-promoting compounds (taurocholic, monoolein, and oleic acids) alleviated depression in plasma vitamin E, indicating interference of T-2 toxin with micelle formation during vitamin E absorption. Similarly, aflatoxin B1 (AFB1) in the feed interfered with the accumulation of carotenoids in chicken tissues (Schaeffer et al., 1988) inducing pale bird syndrome in birds. In fact, AFB1 caused a significant depression of lutein in the toe web, liver, serum and mucosa (Schaeffer et al., 1988a). Pigment restoration was accomplished by feeding the same diet supplemented with lutein (70 mg/kg). In young chickens AFB1 reduced the lutein content of jejunal mucosa up to 35% while serum lutein was reduced up to 70% (Tyczkowski and Hamilton, 1987), suggesting that AFB1 interfered with the absorbtion, transport and deposition of carotenoids. More precisely, AFB1 impaired lutein absorption in chickens (Tyczkowski and Hamilton, 1987a). In similar fashion, ochratoxin A (OTA) was shown to affect...
Introduction

An understanding of how mycotoxins affect aquaculture becomes more important as fish nutritionists rely more heavily on plant ingredients to formulate fish diets. Commercial diets for warmwater fish, such as channel catfish, Ictalurus punctatus, have evolved over the past decade to include little or no animal protein. It has been common practice during the past 10 to 15 years to include in the diets of channel catfish up to 10% fish meal or other sources of animal protein. More recently, nutritional research with salmonids is striving to develop practical diets that contain reduced levels of animal protein that are replaced with higher levels of plant protein and energy sources from oilseed meals and cereal grains. Therefore, with increasing use of plant sources of protein or energy, the likelihood of exposing cultured fish to mycotoxin-contaminated diets becomes eminent.

Concerns about mycotoxins in aquaculture began over 40 years ago when hepatocellular carcinomas of rainbow trout, Onchorhyncus mykiss, being cultured in commercial and governmental fish hatcheries in the US were found to have developed liver nodules or hepatomas (Post, 1987). Much laboratory research work went into understanding the cause of the hepatomas that appeared in rainbow trout. These efforts have been thoroughly described by Dr. J.E. Halver (1969). After numerous studies it was found that trout fed pelleted dry diets containing trout and more recently with warmwater aquaculture fish include the Aspergillus or Penicillium mycotoxins, cyclopiazonic acid and ochratoxin A (OTA), and the Fusarium trichothecene mycotoxins T-2 toxin and deoxynivalenol (DON). Other Fusarium mycotoxins like fumonisin B₁, (FB₁) and moniliformin have been studied recently.

Background

The occurrence of aflatoxicosis at fish hatcheries in the US producing rainbow trout and in turkey farms in the UK caused great concern in the early 1960s about the safety of the food supply for both domesticated animals and humans. Initially, the condition affecting turkeys was referred to as turkey X disease (Blount, 1961), but was subsequently identified as being caused by mouldy peanut meal imported from Brazil that was infected with Aspergillus flavus.

In the US, rainbow trout reared in government and commercial hatcheries were found to have developed liver nodules or hepatomas (Post, 1987). Much laboratory research work went into understanding the cause of the hepatomas that appeared in rainbow trout. After numerous studies it was found that trout fed pelleted dry diets containing...
Introduction

Analysis forms an integral part of almost all studies involving mycotoxins. There are many reasons for mycotoxin analysis that range from the need to enforce legislative limits, to on-line monitoring for quality control of materials in the food and feed industries and surveillance to monitor occurrence to estimate consumer exposure. In addition, research studies require, for example, measurements to determine the fate of the toxins during food processing, means for their prevention and control, research into the relationship between fungal species and the toxin produced, toxicological studies and veterinary investigations.

Analysis is often regarded as something best left to the specialist chemist to provide a service whose results are accepted without question by the customer. Analysts are often regarded as cautious about their results and liable to wrap these up in all sorts of provisos and warnings. This chapter will show why this caution is justified and will illustrate that the determination of mycotoxins, in common with many other types of natural contaminants, is a complex and difficult field. It is thus essential that the analyst has full confidence in his methods and takes all necessary precautions to ensure the reliability of his results and the suitability of the method for the task in hand. At the same time the customer should demand evidence that appropriate quality checks are incorporated as routine. This is incumbent on all parties because important decisions that sometimes affect national and international trade relations and involve large amounts of money may need to be made on the basis of a few analytical results.

This chapter does not merely provide a list of selected methods and references but aims to discuss many of the factors that influence how a method is selected, developed and operated effectively, together with the controls necessary to ensure that it continues to work reliably and accurately. It is aimed to help those new to the field to understand and avoid some of the pitfalls in analytical development and method application and to assist in general improvement in the standard of mycotoxin analysis. In addition, it is hoped that managers and food quality technicians may gain an insight into the complexities of mycotoxin analysis and assist in communication with the analytical fraternity.

Aims and preparation for mycotoxin analysis

OBJECTIVE OF THE ANALYSIS

In this section it is assumed that the need for the determination of mycotoxins has arisen and that the organisation requiring this has no
MYCOTOXINS IN THE HUMAN FOOD CHAIN

Fabio Galvano1, Alberto Ritieni2, Gianfranco Piva3 and Amedeo Pietri3
1Department of Agro-forestry and Environmental Science and Technology, Mediterranean University of Reggio Calabria, Italy; 2Department of Food Science, Federico II University, Napoli, Italy; 3Institute of Food Science and Nutrition, Catholic University of the Sacred Heart, Piacenza, Italy

Introduction

The impact of mycotoxins in the human food chain is an important issue worldwide. In general, consumers perceive less risk from mycotoxins than from other food-related threats such as pesticides, additives, heavy metals and microbial agents. This is due to the fact that, at least in developed countries, mycotoxins very rarely cause acute intoxication outbreaks or health emergencies, the impact of which is often amplified by the media. Nevertheless, the real danger of mycotoxins is potentially very high, which is why they have been called 'hidden killers'. Mycotoxins are highly undesirable substances that should not be present in food and for which a zero tolerance would be ideal. However, even good agricultural, storage and processing practices cannot completely prevent contamination; and it is impossible to achieve a truly mycotoxin-free food chain. Consequently, small quantities of mycotoxins believed not to be dangerous are legally tolerated. Despite incomplete toxicological, epidemiological and exposure data needed to fully assess human exposure and health risks, and establish causal relationships between mycotoxins in foods and human disease, responsible risk management makes it necessary to take action (Kuiper-Goodman, 1995). For these reasons and in order to achieve realistic goals for mycotoxin management, public authorities of many countries have fixed legal limits for mycotoxin presence in foods. Worldwide legal limits have been recently reviewed by van der Westhuizen et al. (2002), who recorded that 77 countries have specific regulations for mycotoxins, 13 countries have no specific regulations, and no data are available for about 50 countries, many of them in Africa. However, the matter of the legal limits is questionable. In the recent past the regulatory limits were highly variable depending on the degree of development and economic involvement of the countries. In recent years serious efforts at harmonization have been made worldwide, but further work is still needed, as regulatory limits are often a practical compromise between the need for safe commodities and the economic consequences of the regulatory level chosen.

Suspected human mycotoxicosis

Mycotoxins can enter the human food chain directly by cereals, seeds, spices, fruits, beverages and other plant materials, and indirectly by food products obtained from animals given contaminated feeds through residues in milk, meat, eggs and their derivates. Consumers in developed countries are surely less exposed to mycotoxins than those in developing countries. This is due to several factors, e.g. abundance of food resources, modern food handling and preservation technology, and effective
MOULD GROWTH AND MYCOTOXIN PRODUCTION

Elizabeth Santin
Universidade Federal do Paraná, Curitiba, Paraná, Brazil

Introduction

The significant advance in intensive animal production systems is at once the cause and the consequence of the increase in grain production. Production of poultry and swine, in particular, requires a large amount of grain to fulfill their dietary needs. For this reason grain production increases every year; and following harvest, most of the grain is stored until utilized. Storage conditions are determined by the complex interaction among the grain, the macro- and microenvironments, and a variety of organisms including microorganisms, insects, mites, rodents, and birds. Grain provides an abundant source of nutrients, but the natural consequences of the ecosystem during storage often will be spoilage of the grain.

Mould growth in grain is a normal occurrence in both the field and in storage. Mould growth can spoil the nutritional aspects of the grain and also result in secondary metabolites that are highly toxic to animals, humans, and plants. These so-called mycotoxins have been extensively studied since 1961, when groups of highly toxic Aspergillus flavus metabolites, the aflatoxins, were isolated from groundnut meals that had been imported into the UK.

In general, pre-harvest control of mould growth is somewhat compromised by the inability of man to control the climate, since both insufficient and excessive rainfall during critical phases of crop development can lead to mould contamination, spoilage of grain, and mycotoxin production. However, the post-harvest handling of grain presents many more opportunities for controlling mould growth and its consequences. Careful drying of grains and good storage management should minimize post-harvest fungal growth and therefore, mycotoxin production.

This review introduces certain aspects of mould growth in grains, the production of mycotoxins by these moulds, and their relationship with animal production.

Grain mould pathogens

Moulds are fungi that grow by producing long filaments called hyphae. They are plants that contain no chlorophyl and can grow in the absence of natural light. Moulds grow from single cells to a body of branched hyphae. In general, hyphae are important to the survival and dispersal of fungi. A network of hyphae is referred to as mycelium. This hyphal network is responsible for ‘cementing’ kernels together, which results in columns of grain that cannot be separated. Grain mould fungi also produce spores (conidia) capable of aerial dispersal in the field as well as within a grain storage bin. It is usually masses of these spores that give the mould a characteristic colour. Spores are dispersed passively by wind and rain. Insects can serve as vectors of these fungi, usually by transporting the spores on their bodies. Insects also increase the surface area available for
CURRENT CONCEPTS IN MYCOTOXICOSES IN SWINE

Trevor K. Smith, Gabriel Diaz and H.V.L.N. Swamy
Department of Animal and Poultry Science, University of Guelph, Guelph, Ontario, Canada

Introduction

Mycotoxins are fungal metabolites that can reduce performance and alter metabolism of livestock and poultry (Wannemacher et al., 1991). The pathological states arising from the consumption of feeds contaminated with mycotoxins are referred to as mycotoxicoses. Mycotoxins can be formed in the field pre-harvest and may continue to be formed under suboptimal storage conditions post-harvest. High moisture content often predisposes feedstuffs to fungal growth and mycotoxin formation. Temperature is another key factor. Some fungi, such as Aspergillus flavus, are usually found in tropical and semitropical climates. This mold produces the carcinogenic hepatotoxin aflatoxin. Fusarium fungi, however, are more common in temperate climates and Fusarium mycotoxins are likely the most common mycotoxins on a global basis (Wood, 1992).

Aflatoxicosis in swine

Aflatoxins are produced mainly by Aspergillus flavus and A. parasiticus. Aflatoxicosis has been investigated in many different animal species and in more depth than other mycotoxins (Smith and Ross, 1991). This is because aflatoxins are among the most acutely toxic of mycotoxins causing extensive liver pathology. There is also concern about residues of aflatoxin and metabolites in foods because of the well-documented carcinogenicity of these compounds.

EFFECTS OF DIETARY AFLATOXIN ON GROWING AND FINISHING PIGS

Chronic aflatoxin B1 toxicity in growing and finishing pigs (40 to 140 kg live weight) was described by Bonomi et al. (1992). The feeding of 500, 650 and 800 µg/kg aflatoxin B1 reduced weight gain, feed utilisation, lipid digestion and renal function. In an experiment of similar design, it was shown that chronic feeding of aflatoxin G1 resulted in more severe liver pathology than was observed with aflatoxin B1 (Bonomi et al., 1993). The feeding of up to 400 µg/kg aflatoxin B1, however, had little effect on performance and mycotoxin tissue residues in pigs grown from 65 to 95 kg live weight (Wu et al., 1989). Studies of feeding aflatoxin contaminated corn to weanling and growing pigs described reduced growth rates and feed consumption as well as elevated serum γ-glutamyltransferase (GGT) activity at a dietary aflatoxin concentration of 922 µg/kg B1 (Schell et al., 1993). Feeding 800 µg/kg aflatoxin for four weeks to starter pigs resulted in changes in numerous serum parameters including albumin and total protein concentrations as well as activities of GGT and alkaline phosphatase indicating liver damage (Schell et al., 1993). A similar
Mycotoxins in growing forage grasses

Natural grassland covers large areas in moderate climates across the world. Whilst grass and hay have been monitored for many decades for environmental pollutants, either naturally occurring substances or industrial products, natural toxins such as secondary plant metabolites or fungal metabolites were considered to be only of local interest. The two major diseases related to either tall fescue (fescue toxicosis) or perennial ryegrass (staggers) and the considerable local economic losses related to these disease complexes in grazing animals, like ruminants and horses, stimulated research activities in this area (Table 1).

Toxinogetic Endophytes in Pasture Grass

Various endophytic fungi may infect growing pasture grass. In particular, species of the
MYCOTOXIN INTERACTIONS

Roger D. Wyatt
Department of Poultry Science, University of Georgia, Athens, Georgia, USA

Introduction

Mycotoxicology can be defined as the study of highly toxic metabolic by-products, resulting from the growth of moulds on a feedstuff, such that when an organism is exposed to these metabolic by-products in relatively minute amounts, an alteration of the structure or disruption of the function of cells, tissues, organs, or organ systems results. When animals are exposed to a mycotoxin, the net result of exposure to the toxin is defined as a response. This mycotoxin-related response may be subclinical with no visible changes in the animal. On the other hand, this response may result in clinical changes of the animal with these changes being easily detectable and of such a unique nature that they can be used to accurately diagnose the toxicity. It can be inferred that a response, whether subclinical or clinical, is associated with substandard productivity or poor health of the affected animal.

The manifestation and magnitude of a mycotoxin-related response is dependent upon three situations. First, the severity of the response will be dictated by the dose of the mycotoxin. Since mycotoxins are usually introduced into an animal via the feed, the dose is directly related to 1) the concentration of the mycotoxin in the feed source, 2) the daily intake of feed, and 3) the body size of the target animal. When these variables are known, a daily dose or intake can be accurately determined and is usually expressed as units of toxin intake/unit of body weight/unit of time (i.e. mg toxin/kg of BW/day).

Although the dose may be accurately determined, another important variable is the duration or time frame that the determined dose is exposed to the animal. For example, an animal receiving a particular dose for one day will obviously exhibit a less severe response compared to an animal receiving the exact same dose for 30 days. The longer the administration of a particular dose the more severe will be the response.

The third determinant of a response to a feed-borne mycotoxin is typically referred to as interactions. Interactions constitute a very broad set of circumstances that can enhance, diminish or have no impact on the response of an animal to a defined dose for a defined length of time. For example, a group of animals receiving a feed with a defined mycotoxin concentration for a defined length of time may respond quite differently than a group of the same animal species receiving the same dietary concentration of the mycotoxin for the same length of time, but managed in a different manner, exposed to a different set of environmental conditions, or influenced by some other factor.

Specific interactions known to affect response to mycotoxins include; age and gender of the target animal, nutritional status at the time of mycotoxin exposure, genetic make-up, environmental extremes, presence of multiple mycotoxins in the ration, and
MYCOTOXINS: METABOLISM, MECHANISMS AND BIOCHEMICAL MARKERS

Ronald T. Riley and James Pestka

Introduction

There are probably tens of thousands of fungal metabolites, however, the food-borne fungal metabolites that are suspected or known to cause disease in humans or animals number in the hundreds (Riley, 1998). For this review, mycotoxins are defined as those metabolites that when consumed or absorbed by animals cause sickness or behavioural changes. This definition distinguishes between ‘fungal metabolites’, ‘toxic fungal metabolites’, and ‘mycotoxins’.

The number of known mycotoxins that pose a measurable health risk to farm animals is quite limited because, while many fungal metabolites have the potential for toxicity, only a relative few are documented and confirmed to cause toxic effects in field situations. Nonetheless, the knowledge derived from studies with laboratory animals and in vitro studies serves as a warning for the possible contribution of mycotoxins in altering immune function (Bondy and Pestka, 2000), contributing to unexplained animal diseases, and in performance problems in farm animals (Osweiler, 2000). Several excellent reviews document the toxicology of mycotoxins in farm animals with extensive descriptions of the clinical manifestations (National Academy of Sciences, 1979; Richard and Thurston, 1986; Raisbeck et al., 1991; JECFA 56th, 2001; CAST, 2003; Haschek et al., 2002; Cousin et al., in press). This review describes the main clinical signs in farm animals exposed to levels of mycotoxins encountered in field outbreaks, metabolism, mechanisms of action and biochemical markers of exposure. The purpose of the review is to highlight those observations that could help to identify the responsible mycotoxin when it is known that the outbreak is a result of consumption of mouldy feed. Some clinical signs are unique and some are highly suggestive of a particular mycotoxin. While it would be most useful to have simple mechanism-based biochemical markers that provide definitive identification of a specific mycotoxicosis, this is only possible for a very few mycotoxins. Thus, from a forensic perspective, the investigator must use all the tools available to identify the cause of a feed-borne disease outbreak.

The mycotoxins that present the greatest risk to farm animals are those that occur in commodities that are consumed in large amounts, and include aflatoxin B₁, ochratoxin A, fumonisins B₁ and B₂, deoxynivalenol, T-2 toxin, zearalenone, ergot alkaloids, ergot-like alkaloids, and macrocyclic trichotheccenes. This review will cover only those mycotoxins for which exposure is known to be high and those that are known to cause disease in animals or are suspected to be modifying factors in disease processes. Mycotoxins with biochemical mechanisms of action that strongly suggest that the action could modulate disease processes will also be reviewed. Because there are literally thousands of research articles on this subject,
implicated as a causative agent in several cases of field intoxication, involving pigs, cattle, quail, and man (Bryden, 1991). Acute doses of CPA administered to rats cause toxic lesions in liver, spleen, gastrointestinal tract and skeletal muscle. CPA is a potent inhibitor of Ca$^{2+}$ uptake and Ca$^{2+}$-dependent ATP-ase activity in both sarcoplasmic and endoplasmic reticulum (Riley et al., 1995) (Figure 2). Other than disrupted calcium metabolism, there is no useful biochemical marker for exposure to CPA, however, because it binds directly to the sarcoplasmic/endoplasmic reticulum calcium ATP-ase (SERCA), it is possible that the CPA-SERCA adduct could be detected in membrane vesicle preparations using electrophoresis.

Deoxynivalenol and the trichothecenes

Trichothecenes are a group of over 180 sesquiterpenoid mycotoxins produced by *Fusarium*, *Stachybotrys* and other fungi.

Figure 2. Biochemical mechanism of action of cyclopiazonic acid. The chemical structures of cyclopiazonic acid and a schematic showing inhibition of sarcoplasmic or endoplasmic reticulum calcium-dependent ATPases (Modified from Riley, 1998).
EFFECTS OF MYCOTOXINS IN RUMINANTS

Jean-Pierre Jouany1 and Duarte E. Diaz2
1INRA, Herbivore Research Unit, Clermont-Theix, France
2University of Puerto Rico, Mayagüez, Puerto Rico

Introduction

Mycotoxins are toxic, biologically diverse, secondary fungal metabolites produced by several fungi, particularly by species of Aspergillus, Fusarium and Penicillium. Apart from the threat to public health, mycotoxins are associated with significant economic losses for both crops and animals, including ruminants. Although several hundred mycotoxins have been described in the scientific literature, less than 10 have been extensively studied since the discovery of aflatoxin in the early 1960s. Mycotoxin-producing moulds are ubiquitous in nature and are commonly in contact with forages and cereals in the field, during harvest, drying and transport as well as during storage. Depending on the specific crop, mycotoxin, and environment, contamination with mycotoxins may be more likely at certain phases of production and handling, but contamination is rarely associated with just one mycotoxin. Because the same fungus is able to produce several mycotoxins and several fungi can produce the same mycotoxin, it is difficult to correlate mycotoxins to the presence of moulds in feeds. The presence of moulds does not directly indicate presence of mycotoxins, but if toxigenic moulds are present and the proper conditions exist (stress), there is a potential for mycotoxin production. Conversely, the absence of moulds does not guarantee the absence of mycotoxin, because the toxin may be present long after the death of the toxin-producing moulds.

Ruminant diets generally include both forages and concentrate, which may increase the risk of mycotoxins in comparison with animals that do not consume forages. The multiplicity of ingredients in complex diets may increase the probability of multiple mycotoxin contamination but decrease the risk of high mycotoxin concentrations because any one feed ingredient is diluted in the final diet. New techniques for preservation of wet forages, such as silages and wrapped bales, have been developed over the past 20-30 years. Preserved forages are more likely to harbour moulds and associated toxins than dry forages when anaerobic conditions are not strictly controlled. Many agricultural and food industry by-products such as fruit pulp, beet pulp and brewery wastes commonly used in ruminant diets are often handled in wet form, which means that moulds can grow and mycotoxins be produced during the storage and transport phases. Furthermore, grazing systems cannot be considered completely safe from mycotoxin contamination. Fresh grasses can be contaminated with mycotoxins (Erasmuson et al., 1994; Sporsen et al., 1995) including fungal endophytes that produce toxins such as ergovaline, lolitrem B and peramine (Lewis and Clements, 1986). Prohibition of antifungal agents in
15

MYCOTOXIN SEQUESTERING AGENTS: PRACTICAL TOOLS FOR THE NEUTRALISATION OF MYCOTOXINS

Duarte E. Diaz¹ and Trevor K. Smith²
¹University of Puerto Rico, Mayagüez, Puerto Rico; ²University of Guelph, Guelph, Ontario, Canada

Introduction

Ever since the first report of a mycotoxicosis in the early 1960s researchers all over the world have been meticulously researching ways to eliminate or minimise the effects of these inevitable contaminants. Due to the wide range of mycotoxins that can contaminate animal feeds and their variable chemical compositions, protection against mycotoxicosis is a relatively difficult task.

Among all the available approaches to control mycotoxin contamination the simplest strategy is based on the prevention of the formation of mycotoxins in feeds (Lopez-Garcia and Park, 1998). Even with current technologies it is very difficult to predict or to prevent their occurrence either preharvest or during storage and feed processing (Wood, 1992). Once ingredients become contaminated with mycotoxins, elimination of the contaminated product is the most effective method of avoiding the problems related to their ingestion (CAST, 2003). Unfortunately, due to the difficulties in obtaining a representative sample it is quite difficult to accurately determine the level of contamination of a specific feedstuff. The impracticality and cost associated with the complete substitution of these ingredients means that this practice is not performed as frequently as recommended. Therefore, mycotoxins represent a public health concern as animals consuming mycotoxin-contaminated diets may leave residues of these toxins in animal-derived food products.

Mycotoxin decontamination refers to methods by which the mycotoxins are removed or neutralised from the contaminated feed while mycotoxin detoxification refers to methods by which the toxic properties of the mycotoxins are removed. These strategies include physical, chemical and biological methods. Chemical procedures like treatment with acid/base solutions or other chemicals, ammoniation, ozonation, and reaction with food grade additives such as sodium bisulfite have proven effective in degrading and detoxifying aflatoxin contaminated feedstuffs (CAST, 2003). Biological methods primarily involving the degradation of the toxin by microorganisms are receiving increasing interest among researchers and have shown positive results (Volkl et al., 2004). Physical procedures like sorting, thermal inactivation, irradiating or extracting contaminated products have been attempted with variable success (CAST, 2003).

Any detoxification or decontamination method for mycotoxin-contaminated feedstuffs should fulfil the following prerequisites (Sinha, 1998).

1. Be effective in removing, destroying and inactivating the mycotoxin,
2. Do not produce toxic or carcinogenic/mutagenic residues in the treated
INDEX

Activated charcoal 325-327
Acquired immunity 106, 107-108
Acremonium spp. (see also Neotyphodium)
 strictum 251
 sclerotigenum 251
Adsorbents 44-45
Aflatoxin
 Absorption 297
 AFB_B, B, 27-28, 229, 296
 AFG_G, G, 27-28, 105, 229, 296
 AFM, 193-195, 229, 296-298,
 AFP, 28
 Apoptosis 105
 Aquaculture 139-141
 Beer 204
 Biomarkers 280-281
 Calves 120
 Carcinogenicity 1, 28, 77, 139, 281
 Cats 78, 79
 Cattle 298-299
 Carotenoids and 93
 Cereals 196-201
 Conditions for production 59
 DAS and 274
 Dates 206
 Digestive enzymes 270
 DNA 99
 Dogs 77-79
 Ducks 29
 Eggs 196
 Excretion 28, 297
 Extraction 164
 Feed nutritive value 271
 Fertility 29-30
 Fusariotoxins and 240-241
 Geese 30
 GSH/glutathione 94-95, 281
 Hepatitis 77, 192
 Hepatocarcinoma 140, 188, 191-192
 Horses 58-60
 Immunosuppression 30-31, 109-111, 114,
 148, 272
 Lipid peroxidation 98
 Melatonin 98, 105
 Metabolism 280-281
 Methods of analysis 178
 Milk 193-195 (see regulations)
 Mink 326
 Ochratoxin and 42-43, 274
 Pheasants 30
 Pigs 120, 235-236
 Poultry 27-31, 119
 Production conditions 229
 Regulations 1, 10-11, 31, 77, 139, 298
 Residues 34, 235
 Rumen metabolism 296-297
 Selenium 119
 Sequestering agents 46, 326-331
 Sheep 299
 Structure 28
 T-2 toxin and 43
 Turkey X disease 25, 77, 139, 280
 Vitamin D 28
 Vitamin E 119
 Aflatrems 253
 Agroclavine 251, 258
 Alkaloids (see also ergot alkaloid compounds)
 251-254, 285
 α-tocopherol (see tocopherols)
 Alternaria spp. 67, 226, 257
 Ammoniation 152, 323
 Analysis 157-180
 Accept/reject limits 10-11
 Cleanup 165-166
 Concentration 166
 Detection 167-169
 Extraction 163-165
 Method evaluation 169-174
 Multi-methods 170-171
 Objectives 157-179
 Quantitative methods 10-16, 159-161
 Rapid methods 161
Index

Safety 162-163
Sampling 1-10, 162
Sample preparation 163
Separation 166-167
Standards 174-176
Variation 11-16
Antibiotics
Ban 108
Mycotoxin effects 259, 310
Antioxidants (93-121, see also individual antioxidant)
Protective effects 96, 97, 98, 118-121
T-2 37
Antioxidant enzymes (see individual enzymes)
Apoptosis
Defined 97-98
DON 104-105
Fumonisin 101-103
Mycotoxins 98-99
OTA 103-104
Zearalenone 105
Aquaculture 139-152
Ascorbic acid
T-2 and 37, 93
Asidici spp. 258
Aspartame 96
Aspergillus spp.
clavatus 260, 311
flavus 27, 31, 32, 58, 77, 78, 79, 201, 229, 281, 296
fumigatus 67, 257, 258, 259-260
niger 79
nominus 229
ochraceus 27, 258, 80, 142, 307
parasiticus 27, 32, 58, 77, 296, 201
terreus 79, 257
versicolor 27, 32, 229, 258
AST 299
Aurofusarin
Embryonic development 95
Poultry 40-41
Pro-oxidant 94-97
Residues 34
Quail 94
Baccharin 100
Balkan endemic nephropathy 142, 189-191
Barley 198-199, 204
Beauvericin 201
Beer 204-205
Bentonite (see Clays)
Bermudagrass staggers 254
Binding (see Sequestrants)
Biomarkers 279-291
Birdseed 79, 80
Botryodiplloidine 258
Brewery by-products 260
Broiler breeders 29-30
Broilers (see poultry)
Bursa of Fabricius 30, 47, 107, 149
Byssochlamys spp. 258, 310
fulva 205
nivea 205, 311
Calves
Aflatoxin 120
Fumonisins 103
Carcass quality
Poultry 27-29, 32, 39
Pigs 237
Residues 34
Carcinogens
Aflatoxin 28
Fumonisins 102
Sterigmatocystin 32
Cardiac beriberi 188
Carotenoids
Aflatoxin and 93
Ochratoxin and 94
Sequestrants 333
T-2 and 37, 93
Caspases 98, 100, 101, 102, 104
Catalase
Aflatoxin 95
Apoptosis 98
Fumonisins 95
Catfish 140-152
Cats
Aflatoxin 78, 79
DON 82-83
Ochratoxin 81
T-2 82
Cattle
Fescue toxicosis 252
Mannosidosis 256
Mastitis 259
Mycoses 259
Rye grass staggers 253
Rumen fermentation 260
Sequestrants 327
Silage toxins 258-260
Cereal contamination 26, 33, 34, 35, 196-201
Ceramide synthetase (see Fumonisin)
Cell-mediated immunity 106
Measuring activity 108
DON, 104-105, 284
OTA effects 112-113
T-cell formation 107-108
Chaetoglobosins 206
Chanoclavine 251
Chlorophyllin 330
Cholestryramine 330
Chronic interstitial nephropathy 190
Citrinin 27
 Conditions for production 229
 DNA 99
 Ochratoxin and 274
 Poultry 35
 Pro-oxidant effects 97
Claviceps spp. 2
 paspali 254
 purpurea 86
Clavine alkaloids 251
Clay-based sequestrants 327-330
 Bentonite/montmorillonite 325, 327-328
 HSCAS 45-46, 48, 151-152, 326, 329-330
 In vitro evaluation 324-325
 Yeast cell wall derived 330-334
Zeolites 324, 328-329
Cladosporium 226
Clostridium spp. 257
Cocoa 206-207
Co-contamination (see also synergism, and interactions) 273-275
 Pet foods 86
 Poultry 41-44
 Coenzyme Q10 120
 Coffee 206
 Colic 68
 Conjugate diene
 Aflatoxin 98
 T-2 97
 Control (see prevention, detoxification, sequestering agents)
 COPD 59-60, 257
Corn
 Aflatoxin 26, 59, 196-197
 Citrinin 35
 CPA 34
 Fusariotoxins 26, 198-199, 260-261
 Screenings 63, 286
 Silage 257-258
Cyclopiazonic acid (CPA)
 Aquaculture 142
 Biomarkers 281-282
 Conditions for growth 229
 Dogs 85-86
 Methods of analysis 178
 Mode of action 282
 Poultry 31-32
 Sequestrants 324
 Structure 32
 Tumour promotion 281
 Turkey X disease 32
Cytokines 106 (see also individual cytokines)
 Assay 108
 Macrophages 107
DON 117-118
 OTA 113
 Swainsonine 256
Cytotoxicity assay 108
Dates 206
Decontamination 152, 323
 Delayed-type hypersensitivity reactions 108
Deoxynivalenol (DON) 197, 230
 Absorption 304, 284
 Apoptosis 99-100, 104-105, 284
 Aquaculture 146-147
 Beer 170, 204
 Cats 82-83
 Cattle toxicity
 Beef 305
 Dairy 304-305
 Cereals 198-199
 Dogs 82-83
 Extraction 164, 170
 Fumonisin and 241, 274
 Fusaric acid and 44
 Horses 61-62
 Immunity effects 109, 115, 117-118, 239, 283, 305
 Metabolism 302
 Methods of analysis 178
 Mink 83
 Molecular mode of action 283-284
 Ochratoxin and 241
 Pigs 238-239
 PMTDI 209
 Poultry 38
 Regulatory 38
 Residues 34, 38
 Rumen metabolism 302-303
 Selenium 120
 Sequestrants 330
 Sheep 305
 Silage 260
 Structure 36
 T-2 and 241-242
 Detoxification 323
 Chemical 44
 Rumen microbes 296
Diacetoxyxycirpenol (DAS) 60, 197, 301
 Absorption 304
 Aflatoxin and 274
 Apoptosis 100
 Bananas 206
 Cattle 302-304
 Dogs 82
 Poultry 38
 Rumen metabolism 303
 Structure 36
 T-2 toxin and 43
Index

Diplodia 226

Dogs
- Aflatoxin 77-79
- CPA 85-86
- DAS 82
- DON 82-83
- Ochratoxin 80-81
- Patulin 85
- Penicillic acid 85
- Penitrem A 84

DNA
- Adduct formation
 - Aflatoxin 191-192, 298
 - OTA 96, 103-
- Fragmentation 99

Ducks 29, 30, 37, 40

Dyschondroplasia 36, 40

Eicosanoids 107

E. coli 105

Eggs
- Mycotoxin transfer 31, 195-196

Elymoclavine 251

Embryonic development
- Aurofusarin 95
- Fumonisine 101
- T-2 100-101

Endophytes 249-254, 255
- Alkaloids produced 251
 - *Balansia* 250
 - *Embellisia* 255-256
 - *Epichloë* 250
 - *Neotyphodium* 250-253
- Role of 251

Epichloë spp.
- *amarillans* 250
- *baconii* 250
- *brachyelytris* 250
- *bromicola* 250
- *elymi* 250
- *clarkii* 250
- *festuca* 250
- *glyceriae* 250
- *sylvatica* 250
- *typhina* 250

Equine leukoencephalomalacia 63-64, 237, 285-287, 306

Eremofortine 258

Ergine 251

Erginine 251

Ergocristine 251

Ergostane 251

Ergot 188, 285

Ergovaline 251-252

Ergovalinine 251-252

Ergotism 188, 285

Ergovaline 251-252

Fatty liver syndrome 280

Fermentation 227 (see also Silage, Rumen metabolism)

Fescue toxicosis 66, 251-253, 285

Festuclavine 258

Field fungi 226

Flavenoids 205

Fermentation 227 (see also Silage, Rumen metabolism)

Flow cytometry 108

Forages 64-68, 249-261

Fumigaclavine 67, 258

Fumitremorgens 259

Fumonisin 197-198

Absorption 306

Aflatoxin and 240

Analysis 160

Apoptosis 101-103

Aquaculture 143-144, 149-150

Beer 204

Biomarkers 237, 287

Carcinogenicity 102, 306

Cereals 197, 199-200

Cattle toxicity 306-307

Cerebriformin 144-145

Chickens 114

Conditions for production 230

DON and 274

Fusaric acid and 147-148

GSH response 95

Horses 63-64, 143, 237, 285-286

Immune function 113-115, 149

Lipid peroxidation 97

Methods of analysis 179

Mode of action 288

Moniliformin and 144-145

Neural tube defects 189

Occurrence 200-201, 305

Oesophageal cancer 192-193, 306

Pigs 63, 143, 237-238, 286

Poultry 39-40, 286

Residues 40

Rumen metabolism 260, 305-306

Sequestrants 325, 327

Sheep 306

Silage 260

Sphingolipids 39, 102, 144, 237, 286-287, 260

Spiking mortality 39

Structure 199

T-2 and 274

Total daily intake 208-209

Turkeys 114
Index 345

Vitamin E 119
Fungistats 231-232
Fusaproliferin 201
Fusarenone-X 60, 197, 230
Apoptosis 100
Immunesuppression 109
Fusaric acid 197, 205, 147-148, 230
DON and 44
Horses 62
Poultry 38-39
Synergism 147-148
Fusarin C 230
Fusarium spp. 197, 229-230
culmorum 197, 230
equiseti 40, 197
graminearum 27, 38, 58, 197, 230, 299, 304
oxysporum 197
poae 197, 230
proliferatum 27, 39, 40, 63, 144, 305
roseum 27
solani 27
sporotrichioides 197, 230, 254
Trichotheccenes (see individual toxins) 197
tricinctum 27
verticillioides (moniliformin) 27, 39, 63, 143, 144, 149, 188, 201, 206, 230, 286, 305
Fusarochromanone 34
Poultry 40
Geese 30, 36
Geographic distribution 25-26
Geotricium spp. 258
GGT 28, 33, 61, 235, 299
Giberella spp. 226
zea 304
Gliotoxin 259-260
Glutathione
Aflatoxin 105
Apoptosis 98
Mycotoxins and 94-95
Glutathione peroxidase
Aflatoxin 95
Fumonisins 95
Glutathione reductase
Aflatoxin 95
DON 95
Fumonisins 95
T-2 95
Glutathione-S-transferase
DON 95
Aflatoxin 95
T-2 and 95
Groundnuts (peanuts) 25, 59, 79, 169
HT-2 230
Grasses 254
Chicks 38
Structure 36
Hatchability
Aurofusarin 95
CPA 97
T-2 95
Vitamin E 96
Haemorrhagic syndrome
Aflatoxin 29
CPA 32
T-2, 305, 311
Hay 256-257, 260
Heat shock protein 102
Helicopter disease 35
Helminthosporium 226
Hepatocarcinoma 188, 191-192
Horses 57-71
COPD 59-60, 257
ELEM 63-64, 143, 285-287
Fusce toxicity 252
Sida carpinifolia toxicity 256
HSCAS (NovaSil) 45-46, 48, 151-152, 326, 329-330
HT-2 toxin 197
PMDTJ 209
Human foods 187-210
Humoral immunity, 106-108, 149
DON 105
Hyphae 225

Immune function (see also Acquired, Cell-mediated, Humoral)
Methods of assessing 108
Overview 106
Suppression by mycotoxins 30-31, 38, 109-110, 118, 148-150, 272-273, 283
Susceptibility factors 57
Indole terpenoids 253
Innate immunity
Aflatoxin 109
Phagocytosis 106
Interactions (see also Synergism) 269-275
Environmental extremes 270
Disease status 272-273
Genetics 270
Nutrition 270-273
Mycotoxin-mycotoxin 273-275
Interleukins 107
Kashin-Beck disease 188
Kwashiorkor 188
Layers
Aflatoxin 32
CPA 34
Index

DAS/MAS 38
LD₅₀ values
Fish 143
Dogs 78
Poultry 41
Legumes 255-256
Lipid peroxidation
Aflatoxin 98
Aurofusarin 99
Citrinin 99
DON 99
Fumonismin 99
OTA 96, 103-
T-2, 96-97
Zearalenone 99
Locoism 255-256
Lolitrem B 66, 251, 252-253
Hay 256-257
Lolium spp. (see Ryegrass)
Lutein
Aflatoxin 93
Lymphocyte proliferation assay 108
Macrophages
Phagocytosis 106-107
Malabsorption syndrome 94
Mannosidosis 256
Marcoatortine 258
Mare reproductive loss syndrome 69-70
Maize (see corn)
MDA 97, 98, 99
Meat/products 195
Poultry 27-29, 33-34
Melatonin
Aflatoxin 98, 105
Milk & milk products 9, 193-195
Mink
DON 83
Moniliformin 84
Sequestrants 326
Zearalenone 83
Monascus spp.
ruber 258
Moniliformin 197
Aquaculture 144-145
Milk 84
Poultry 40
Monoacetoxyscirpenol
Poultry 38
Structure 36
Mould growth 225-232
Mould inhibitors 231-232
Mucor spp. 258
pacemosus 79
plumbus 79
globosus 79
Mycelium 225
Mycophenolic acid 258, 259
Mycosorb 46-49, 331
Aflatoxin 46, 331, 332
Aurofusarin 333
Carotenoids 333
DAS 47
DON 46, 334
Ochratoxin 46, 332
Tocopherols 94
T-2 toxin 46-49, 333-334
Vitamin A 333
Vitamin E 333
Zearalenone 311-332
Mycotoxin production
Conditions 58, 226-227
Myrothecium spp. 60
Natural killer cells 106
Mycotoxin suppression 107, 113
Neosolaniol 197, 303
Neotyphodium spp.
coenophialum 66, 250
lolii 66, 250-253
starri 250
uncinatum 250
tembladeraw 250
Nephotoxin (see OTA) 189, 287
Neural tube defects 188, 189
Neurospora spp. 258
Neurotoxins 66, 228, 259, 260
Nivalenol (NIV) 197, 230
Apoptosis 100
Cereals 198-199
DNA fragmentation 99
Immunosuppression 109
NOAEL 207
NovaSil (see HSCAS) 329
Nutritive value
Toxin response and 271
Mould effects on 271-272
Moulded grain 228
Oats 198
Ochratoxin A
Absorption 60, 308-309
Aflatoxin and 274
Apoptosis 103-104
Aquaculture 142-143, 149
Balkan endemic nephropathy 142, 189-191
Beer 204
Biomarkers 287-287
Carotenoids and 94
Cats 81
Cattle toxicity 309-310
Chronic interstitial nephropathy 190
Index 347

Citrinin and 274
Cocoa 206-207
Conditions for production 229
Coffee 206
DNA 99, 103-104
Dogs 80-81
DON and 241
Extraction 164
Grapes 203-204
GSH response 94-95
Horses 60
Immune function 34, 109, 111-113, 149, 272
Meat 295
Metabolism 309
Methods of analysis 179
Milk 193
Mode of action 287-289
Occurrence 26, 34, 307
Penicillic acid and 241
Pigs 113, 236
Poultry 33-35
PTDI 208
Regulation 33
Residues 34-35
Rumen metabolism 307-308
Sequestering agents 45, 46, 327, 329
Sheep 308, 309-310
Structure 33
T-2 and 241
Teratogenic 309
Testicular cancer 189
Toxicity 309
Vine fruit 203
Vinegar 203
Vitamin E 119
Wine 201-204
Oesophageal cancer 39, 188, 192-193, 306
Oilseeds
 Groundnuts (peanuts) 33, 201
 Sampling 9
 Soyabean 33, 35, 201
Onyalai 2
Paecilomyces spp. 258
Pale bird syndrome 93
Paspalitems 254
Paspalum stagers 254
Patulin 258, 259,
 Absorption 311
 Brewery by-products 260
 Cattle toxicity 311
 Dogs 86
 Fruit 86, 205-206, 260, 311
 GSH response 94-95
 Occurrence 310
 PMTDI 209
 Rumen metabolism 310-311
 Silage 258-259
 Poxilime 253
 Penicillic acid 86, 258, 259
 Penicillium spp. 188, 207
 camemberti 194
 carneum 258
 citrinum 27, 229
 crustosum 85
 expansum 205, 229
 paneum 258
 roqueforti 67, 194, 257, 258-259
 viridatum 27, 33
 verrucosum 80, 142, 229, 307
 Penitrem 259
 Dogs 84-85
 Penicilavin 251
 Pet foods
 Aflatoxin 79-80
 Co-contamination 86
 Ergots 86-87
 Ochratoxin 80-81
 Trichothecenes 81-83
 Phagocytosis 106-107
 Pheasants 30
 Phoma sorghina 188
 Pig
 Aflatoxin 109, 235-236
 DON 238-239
 Fumonisin 102, 237-238
 OTA 104, 113, 142, 195, 236-237
 Pulmonary oedema 63, 143, 286
 Selenium 119
 Plaque-forming cell test 108
 PMDTI 207-8
 PMTWI 207-8
 Polenta 192
 Poultry 25-49
 Aflatoxins 27-31
 Prevention 44, 230-232
 Pro-oxidation 93-121
 Propionic acid 231-232
 Prostaglandins 106
 Protozoa 260, 302, 307, 310
 PR toxin 258, 259
 Structure 67
 Pullularia spp. 254
 Pulmonary oedema 63, 143, 237-238, 286
 Quail
 Aflatoxin 270, 329
 Aurofusarin 94
 T-2 37
 Raisins 203
 Reactive nitrogen species 107

Mycotox-DIGI.indb 347
0x0 3/4/2013 11:15:29 AM
Recurrent airway disease 257
Regulations/regulatory levels 1, 31, 33, 193, 296, 207-210
Respiration 227
Respiratory burst 106-107
Reye's syndrome 188
Rhizoctonia spp.
 leguminicola 67, 255
Rhizopus spp. 258
Rice 197, 198
Risk assessment 207-210
Roquefortine 84-85, 258, 259
Roridin
 Apoptosis 100
 ROS 93-121
 Apoptosis role 98
 Respiratory burst 106-107
Rumen degradation 193
Aflatoxin 296-
Rye 198
Ryegrass (perennial) 251
Ryegrass staggers 66, 252-253
Safe levels in feed 275-276
 Horses 71
 Poultry 44
Salmon 141
Salmonella
 Phagocytosis 107
 Susceptibility to 30, 272
Sambucinol 241
Sampling feeds 1-21, 151, 163,
 Acceptance sampling 2
 Accuracy and precision 3-4
 Lot sizes 9
 Sampling plans 1-8, 17-21
 Static vs dynamic lots 5-8
 Prep 8-10, 163
 Variability 10-16
Satratoxins
 Apoptosis 100
 Horses 64-66
 Sick house syndrome 64
 Straw 257
 Structure 64
Scopulariopsis spp. 258
Selenium
 Protective effects 119-120
Semen quality 237
Sequestering agents 323-335
 Bentonite/montmorillonite 325, 327-328
 Chlorophyllin 330
 Cholestyramine 330
 HSCAS 45-46, 48, 151-152, 326, 329-330
 In vitro evaluation 324-325
 Yeast cell wall derived (see Mycosorb) 330-334
Zeolites 324, 328-329
Sesquiterpenes 230
SGOT 28, 326
SGPT 28
Sheep
 Fescue toxicosis 252
 Ryegrass staggers 253
Shrimp 148-149
Silage 257-260, 310
Slaframine 67, 255
 Structure 67
 Slobber 255
 Sooty mould 254
 Soyabean (see oilseeds)
 Sphingolipids (see also Fumonisin) 63-64, 102, 103, 192
 Spiking mortality 39
 St. Anthony's Fire 188
 Stachybotryotoxicosis 64-66
 Stachybotrys spp. 64-66, 282
 chartarum (atra) 64
 alternans 65
Sterigmatocystin 201
 Aquaculture 142
 Carcinogen 32
 Conditions for production 229
 Poultry 32-33
 Structure 32
Storage
 Aquaculture 150-151
 Fungi 226
 Losses 227-228
 Sugarbeet 257
 Sunflower 33, 35, 201
 Superoxide dismutase
 Apoptosis 98
 Fumonisin 95
Swainsonine 255-256
Synergism of toxins
 Antioxidant enzymes 95
 Aquaculture 144-145
 Immunity 109
 Pigs 240-242
 Poultry 41-44
TBARS
 Aflatoxin 98
 Aurofusarin 99
 Fumonisin 99
 OTA 96
 T-2 97
 Ternatin 98
 Terpenoids 251
 Testicular cancer 189
 Tilapia 141, 143
 T-2 toxin 197, 230
Aflatoxin and 43
Apoptosis 99, 100-101
Aquaculture 145-147
Bananas 206
Cats 82
Cattle toxicity 305
DAS and 43
DNA 99
Ducks 37
Dyschondroplasia 36
Egg production 94
Fumonisin and 274
Grasses 254
GSH 94-95
Hatchability 95
Immunosuppression 38, 109, 115-117, 272
Laboratory animal toxicity 305
Malabsorption 94
Ochratoxin and 241
Poultry 35-38
Rabbits 82
Rumen metabolism 302-303
Selenium 120
Sequestrants 324, 327
Straw 257
Structure 36
Vitamin A and 94
Vitamin E and 37, 96, 119
TNF-α
Apoptosis 101, 102
Macrophages 107
Tocopherol
α-Tocopherol
Aflatoxin 98
Aurofusarin 94
OTA 94, 96
T-2 93, 97
Zearalenone 105
γ-Tocopherol
T-2 and 93
Toxic feed syndrome 39
Tremorgens 66, 84-85, 259
Trichodiene 230
Trichothecenes (see DAS, DON, T-2, etc.)
Trichothecolone 206
Trout 140, 142, 330
Turkeys
Aflatoxin 119
Fumonisin 114
Moniliformin 40
Selenium 119
Turkey X disease 25, 77, 139, 280
Urov disease 188
Verrucarin 64
Verrocolexen 259
Versicolorin A 142
Vine fruit 203-204, 206
Vinegar 203
Vitamin A
T-2 and 94, 120
Vitamin E (see tocopherols)
Wheat 198-199, 201
Wine 201-204
Wortmannin 197
Yeast cell wall-based adsorbents (see sequestrants, Mycosorb)
Zearalenone 147
Absorption 290, 300-301
Apoptosis 105
Beer 204
Biomarker 291
Cattle 290, 300-301
Cereals 198-199
Dogs 83
Extraction 164
Formation 230
Grasses 255
Guinea pigs 83
Horses 62-63
Immunosuppression 109
Mink 83
Metabolites 239-240, 255, 289-290
Mode of action 289-291
Occurrence 26, 197, 299
Pigs 239-240, 290
Poultry 40
Pro-oxidant effects 97
Rabbits 83
Residues 40
Rumen metabolism 300
Sequestrants 329
Silage 260
Zeolite 324, 328-329
Clinoptilolite 329
Tocopherols and 94
Zeralenol 255
Once thought to be only a problem in tropical regions, moulds and the mycotoxins they produce have wide-ranging economic impact on animal agriculture on every continent of the globe. Mould growth robs feed nutritive value and reduces intake, which lowers efficiency. Mycotoxins, even when present at levels previously considered 'trace', have negative effects on performance and health, particularly in the context of today’s more highly productive modern livestock genetics. Food-borne toxins also threaten human health through contaminated cereal and protein sources and transfer of toxins in food animal products.

The Mycotoxin Blue Book focuses on the physiological effects and field occurrence of mycotoxins. Detailed information on types of moulds and mycotoxins and the conditions under which moulds flourish is included. Implications of mycotoxin contamination of feedstuffs for all major food animal species are presented in addition to aquaculture and companion animals. Sampling and analytical issues are covered in depth; as is the topic of mycotoxins in human foods. Finally, practical means of ameliorating mycotoxin effects are addressed. It is the hope of the editor and authors that the material herein will lead to clearer recognition of mycotoxin problems and ultimately to ways of reducing their impact on food animal production.