Nutrition and Climate Change: Major issues confronting the meat industry

Edited by JD Wood and C Rowlings
Nutrition and Climate Change
Context Products Ltd
53 Mill Street, Packington
Leicestershire, LE65 1WN, United Kingdom
First published 2011
© Context Products Ltd
All rights reserved. No part of this publication
may be reproduced in any material form
(including photocopying or storing in any
medium by electronic means and whether or not
transiently or incidentally to some other use of
this publication) without the written permission
of the copyright holder except in accordance with
the provisions of the Copyright, Designs and
Patents Act 1988. Applications for the copyright
holder’s written permission to reproduce any part
of this publication should be addressed to the publishers.

British Library Cataloguing in Publication Data
Nutrition and Climate Change:
Major issues confronting the meat industry

ISBN 9781899043682

Disclaimer
Every reasonable effort has been made to ensure that the material in this book is true, correct, complete and
appropriate at the time of writing. Nevertheless the publishers and the author do not accept responsibility
for any omission or error, or for any injury, damage, loss or financial consequences arising from the use
of the book. Views expressed in the articles are those of the author and not of the Editor or Publisher.
Meat consumption is increasing around the world and meat contributes importantly to most people’s daily requirements of protein, iron and other essential nutrients. Yet global meat production is presently facing two serious challenges. The first is the criticism that meat consumption is unhealthy, because of its contribution to saturated fat intake and the second is the allegation that meat production contributes disproportionately to greenhouse gas emissions and global warming.

This book, the proceedings of the recent Langford Food Industry Conference, presents the latest information on meat’s role in nutrition and human health and examines the arguments surrounding the effects of meat production on the environment. It shows how animal science is developing new production systems which will improve the healthiness of meat and reduce greenhouse gas emissions, including organic meat production. The case for ruminant and other meats as sources of n-3 fatty acids in the human diet is presented. Factors affecting the demand for meat are discussed along with the challenges facing legislators on climate change issues. The final chapter considers the increasing importance of world trade in meat and the need for meat industries around the world to work more closely together on nutrition and climate change issues.

The Langford Food Industry Conference in July 2010 was supported financially by EBLEX and BPEX, to whom we are most grateful.

J D Wood and C Rowlings
Langford, University of Bristol
CONTENTS

Preface

NUTRITIONAL ASPECTS OF RED MEAT IN THE DIET 1
L Wyness

Abstract 1
Introduction 1
Nutrition content of meat 2
Energy 4
Protein 6
Fat and fatty acids 7
Micronutrient composition of red meat 12
Vitamins 12
Minerals 15
Processed meats and meat products 16
Vulnerable groups 17
Summary 19

NUTRITION AND HEALTH: GLOBAL ISSUES FOR THE MEAT INDUSTRY 23
M Strong

Abstract 23
Introduction 24
Nutrition and health issues 26
Legislation and Government intervention 40
Voluntary labelling 41
International perspective 44
Industry collaboration 45
Conclusions 49
Recommendations 50

HEALTH IMPLICATIONS OF REDUCING ANIMAL PROTEIN INTAKES TO MEET ENVIRONMENTAL TARGETS 59
DJ Millward

Abstract 59
Introduction 59
Current intakes and general advice on meat and dairy foods 60
Reductions in animal source foods and nutrition 61
Reductions in animal source foods in the diet and overall health 62
Meat and dairy foods as the main determinant of protein intakes 65
Lower protein intakes and the likelihood of protein deficiency 66
Impact of lower protein intakes on health 67
Sarcopenia 67
Bone health 69
Cardiovascular disease 70
Conclusions 71

RAISING THE NUTRITIONAL VALUE OF BEEF AND BEEF PRODUCTS TO ADD VALUE IN BEEF PRODUCTION 79
ND Scollan, JF Hocquette, RI Richardson and EJ Kim

Abstract 79
Introduction 80
Regulation of intramuscular fat deposition 81
Fatty acid composition of beef lipids 84
Manipulating fatty acid composition of beef 85
Enhancing the fatty acid composition of beef products 90
Lipid metabolism in the rumen 93
Conclusions 96

MEAT AND OTHER ANIMAL-DERIVED FOODS AS SOURCES OF n-3 FATTY ACIDS 105
RA Gibbs, C Rymer and DI Givens

Abstract 105
Health benefits of n-3 fatty acids and human dietary requirements 105
n-3 fatty acids in the food chain 106
Current intakes of n-3 fatty acids 107
n-3 fatty acids in animal foods 108
Enhancing the n-3 fatty acid composition of ruminant meat and milk 110
Enhancing the n-3 fatty acid content of non-ruminant meat and eggs 113
Food quality 116

NOT ALL MEAT IS EQUAL – THE CASE FOR GRASS FED BEEF AND LAMB 123
P Melchett and R Young

Abstract 123
Framing the debate – do we need to double food production? 123
The problem with business-as-usual projections 124
Four hundred international scientists take a different view 125
The pressures of climate change and diet-related ill-health 125
The complexity of looking at all greenhouse gases 126
Soil carbon – the elephant in the agricultural room 127
Getting carbon back into the soil 128
The case for organic, grass reared beef and lamb 129
The UK’s natural advantages in producing climate-friendly beef 129
How organically farmed cattle can be carbon friendly 130
Weaknesses in the organic case? 132
Red versus white meat and human health 133
Conclusion – cattle and other ruminants the key to the future 135

THE DEMAND FOR MEAT AND PATTERNS OF CONSUMPTION:
AN INTRODUCTORY GUIDE 139
CM Palmer

Abstract 139
Introduction 140
The theory of demand 140
The factors affecting demand 142
Moving the demand curves for meat 143
The slope of the curve 152

MEAT PRODUCTION AND THE CLIMATE CHANGE AGENDA 159
D Pullar

Abstract 159
Introduction 160
Production or consumption? 162
Meat consumption considerations 163
Local concerns: managing the GHG cost of English beef and lamb production 164
The emissions challenge 165
Current emissions position 166
Beef production environmental impact 167
Sheep production environmental impact 168
Emissions improvement targets 170
Emissions improvement strategy 171
Efficiency improvement opportunities 172
Efficiency improvement requirements 173
Achieving the feeding efficiency improvements 175
Other environmental impacts 177
Landscape management 178
Carbon sequestration 178
Fertiliser use 178
Nutrient management and planning 179
Water usage and quality 179
viii Nutrition and climate change

CHANGES IN ANIMAL PRODUCTION TO REDUCE GREENHOUSE GAS EMISSIONS 181

CK Reynolds, LA Crompton and JAN Mills

Abstract 181
Improving the efficiency of feed energy utilization 183
Methane energy loss 184
Improving the efficiency of feed nitrogen utilization 189
Conclusion 191

INFORMING FOOD POLICY: INTEGRATING THE EVIDENCE 197

M Gill and JD Wood

Abstract 197
Introduction 197
Food security 198
Food prices 198
Food policy 199
Climate change issues 199
Greenhouse gas emissions from livestock 200
The need for integrated evidence in developing food policy 200

HOW IS THE GLOBAL MEAT INDUSTRY RESPONDING TO THE CHALLENGES OF CLIMATE CHANGE 203

EGJ Murphy

Abstract 203
Introduction 203
Setting the scene 204
International trade in meat is not only unavoidable but desirable 206
What action is the shipping industry taking? 207
The global meat sector 208
The dairy sector 213

INDEX 215
Nutritional aspects of red meat in the diet

Abstract

This paper provides a summary of the nutritional content of red meat in the diet. Meat and meat products can make an important contribution to nutrient intakes in the diet. Red meat contains high biological value protein and important micronutrients, all of which are essential for good health throughout life. Red meat provides a number of vitamins and minerals including iron, zinc, selenium, phosphorus, potassium, vitamin D and B vitamins. Meat also contains a range of fats. Meat is a source of fat and saturated fat, and processed meats are more likely to have a higher content of sodium than lean meat. However, meat also contains the essential omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids. In recent years animal husbandry techniques have been modified to produce meat with a more favourable fatty acid profile and modern butchery techniques and advances in food processing technologies have led to a reduction in the fat content of carcase meat. The composition of different types of meat varies widely. For example, lean red meat is low in total fat, saturated fat and salt, whereas untrimmed meat is higher in both total fat and saturated fat. Most healthy balanced diets will include lean meat in moderate amounts, together with starchy carbohydrates (including whole grain foods), plenty of fruit and vegetables, and moderate amounts of milk and dairy foods. The Food Standards Agency’s ‘Eatwell Plate’ shows how much of the overall diet should come from each food group.

Introduction

There is a wide variety of meat consumed throughout Europe reflecting the different consumer habits and attitudes.

- Carcass meat (beef and veal, lamb and mutton, and pork)
- Poultry (chicken, turkey)
Table 1. Comparison of selected nutrients in beef, lamb and pork (per 100 g)
according to food composition databases from selected countries

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>UK</th>
<th>Denmark</th>
<th>Finland</th>
<th>Italy</th>
<th>Australia</th>
<th>USA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beef, lean, raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy (kJ)</td>
<td>542</td>
<td>647</td>
<td>639</td>
<td>455</td>
<td>528</td>
<td>526</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>22.5</td>
<td>21.1</td>
<td>19.3</td>
<td>21.6</td>
<td>23.0</td>
<td>21.0</td>
</tr>
<tr>
<td>Fat (g)</td>
<td>4.3</td>
<td>7.8</td>
<td>8.4</td>
<td>2.4</td>
<td>3.6</td>
<td>4.0</td>
</tr>
<tr>
<td>SFA (g)</td>
<td>1.7</td>
<td>3.3</td>
<td>4.0</td>
<td>0.8</td>
<td>1.5</td>
<td>1.4</td>
</tr>
<tr>
<td>MUFA (g)</td>
<td>1.9</td>
<td>3.7</td>
<td>1.9</td>
<td>0.8</td>
<td>1.6</td>
<td>1.6</td>
</tr>
<tr>
<td>PUFA (g)</td>
<td>0.2</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.35</td>
<td>0.2</td>
</tr>
<tr>
<td>Niacin (mg)</td>
<td>9.7</td>
<td>10.0</td>
<td>10.4</td>
<td>5.1</td>
<td>4.1</td>
<td>6.2</td>
</tr>
<tr>
<td>Thiamin (mg)</td>
<td>0.1</td>
<td>0.05</td>
<td>0.09</td>
<td>0.11</td>
<td>0.04</td>
<td>0.08</td>
</tr>
<tr>
<td>Vitamin B₁₂ (μg)</td>
<td>2.0</td>
<td>1.4</td>
<td>1.4</td>
<td>2.0</td>
<td>1.1</td>
<td>1.5</td>
</tr>
<tr>
<td>Iron (mg)</td>
<td>2.7</td>
<td>2.1</td>
<td>2.5</td>
<td>1.6</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Zinc (mg)</td>
<td>4.1</td>
<td>4.8</td>
<td>4.0</td>
<td>3.8</td>
<td>4.2</td>
<td>3.9</td>
</tr>
<tr>
<td>Selenium (μg)</td>
<td>7.0</td>
<td>6.8</td>
<td>15.1</td>
<td>5.6</td>
<td>12.0</td>
<td>26.0</td>
</tr>
<tr>
<td>Sodium (mg)</td>
<td>63.0</td>
<td>65.0</td>
<td>51.5</td>
<td>43.0</td>
<td>49.0</td>
<td>54.0</td>
</tr>
<tr>
<td>Potassium (mg)</td>
<td>350.0</td>
<td>325.0</td>
<td>317.0</td>
<td>334.0</td>
<td>360.0</td>
<td>323.0</td>
</tr>
<tr>
<td>Lamb, leg, lean, raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy (kJ)</td>
<td>639</td>
<td>704</td>
<td>767</td>
<td>510</td>
<td>628</td>
<td>536</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>20.2</td>
<td>20.1</td>
<td>19.0</td>
<td>20.0</td>
<td>22.0</td>
<td>20.6</td>
</tr>
<tr>
<td>Fat (g)</td>
<td>8.0</td>
<td>9.8</td>
<td>12.0</td>
<td>4.6</td>
<td>7.0</td>
<td>4.5</td>
</tr>
<tr>
<td>SFA (g)</td>
<td>3.5</td>
<td>4.5</td>
<td>4.2</td>
<td>2.2</td>
<td>2.0</td>
<td>1.6</td>
</tr>
<tr>
<td>MUFA (g)</td>
<td>3.1</td>
<td>3.6</td>
<td>3.4</td>
<td>1.7</td>
<td>2.7</td>
<td>1.8</td>
</tr>
<tr>
<td>PUFA (g)</td>
<td>0.5</td>
<td>0.8</td>
<td>0.4</td>
<td>0.2</td>
<td>1.0</td>
<td>0.4</td>
</tr>
<tr>
<td>Niacin (mg)</td>
<td>5.4</td>
<td>7.5</td>
<td>8.4</td>
<td>4.9</td>
<td>5.6</td>
<td>6.2</td>
</tr>
<tr>
<td>Thiamin (mg)</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Vitamin B₁₂ (μg)</td>
<td>2.0</td>
<td>1.2</td>
<td>1.2</td>
<td>2.0</td>
<td>1.0</td>
<td>2.7</td>
</tr>
<tr>
<td>Iron (mg)</td>
<td>1.4</td>
<td>1.5</td>
<td>1.9</td>
<td>2.0</td>
<td>2.0</td>
<td>1.8</td>
</tr>
<tr>
<td>Zinc (mg)</td>
<td>3.3</td>
<td>3.4</td>
<td>2.3</td>
<td>3.1</td>
<td>4.0</td>
<td>3.8</td>
</tr>
<tr>
<td>Selenium (μg)</td>
<td>4.0</td>
<td>1.4</td>
<td>13.5</td>
<td>18.0</td>
<td>13.8</td>
<td>23.5</td>
</tr>
<tr>
<td>Sodium (mg)</td>
<td>70.0</td>
<td>66.0</td>
<td>58.0</td>
<td>100.0</td>
<td>63.0</td>
<td>62.0</td>
</tr>
<tr>
<td>Potassium (mg)</td>
<td>330.0</td>
<td>218.0</td>
<td>240.0</td>
<td>350.0</td>
<td>325.0</td>
<td>289.0</td>
</tr>
<tr>
<td>Pork, lean, raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy (kJ)</td>
<td>519</td>
<td>784</td>
<td>669</td>
<td>658</td>
<td>461</td>
<td>602.0</td>
</tr>
<tr>
<td>Protein (g)</td>
<td>21.8</td>
<td>20.0</td>
<td>20.6</td>
<td>21.3</td>
<td>23.5</td>
<td>21.2</td>
</tr>
<tr>
<td>Fat (g)</td>
<td>4.0</td>
<td>12.0</td>
<td>8.6</td>
<td>8.0</td>
<td>1.7</td>
<td>5.9</td>
</tr>
<tr>
<td>SFA (g)</td>
<td>1.4</td>
<td>4.8</td>
<td>3.2</td>
<td>3.7</td>
<td>0.6</td>
<td>2.0</td>
</tr>
<tr>
<td>MUFA (g)</td>
<td>1.5</td>
<td>5.4</td>
<td>3.4</td>
<td>2.5</td>
<td>0.7</td>
<td>2.7</td>
</tr>
<tr>
<td>PUFA (g)</td>
<td>0.7</td>
<td>0.9</td>
<td>1.0</td>
<td>1.5</td>
<td>0.3</td>
<td>0.6</td>
</tr>
<tr>
<td>Niacin (mg)</td>
<td>6.9</td>
<td>7.3</td>
<td>8.9</td>
<td>3.0</td>
<td>9.5</td>
<td>4.8</td>
</tr>
<tr>
<td>Thiamin (mg)</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>0.8</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Vitamin B₁₂ (μg)</td>
<td>1.0</td>
<td>0.7</td>
<td>0.6</td>
<td>1.0</td>
<td>0.3</td>
<td>0.7</td>
</tr>
</tbody>
</table>
meat products (including poultry) contribute 40% and 37% of average daily protein intakes in men and women respectively aged 19-64 years (NDNS, 2008/9 data).

Fat and fatty acids

Fat provides the richest dietary source of energy and also supplies essential nutrients such as fat-soluble vitamins and essential fatty acids, but should be consumed in moderation to prevent excessive weight gain. Fat also provides palatability and flavour to foods. There is growing evidence that it is the type of fat rather than the total amount of fat, which is particularly important for cardiovascular disease (Stanner, 2005). It is well recognised that different fatty acids have different effects on blood cholesterol levels and risk of heart disease, some beneficial and some adverse.

Fat in meat is present as intermuscular fat (between the muscles), intramuscular fat (or marbling i.e. within the muscles) and subcutaneous fat (below the skin). The fat content of red meat varies widely, depending on the type of red meat, the cut and the degree of trimming (Higgs, 2000). In some countries, meat with a low fat content is classified as ‘lean meat’. Although there is no international definition of lean meat, lean meat generally has between 5 and 10% fat (Williamson et al., 2005).

Recommendations on the percentage of food energy provided by the various types of fatty acids, and the current average intakes in adults in the UK are provided in Table 4 below.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total fat</td>
<td>35</td>
<td>35.5</td>
<td>35.5</td>
<td>34.7</td>
<td>34.7</td>
</tr>
<tr>
<td>Saturates</td>
<td>11</td>
<td>13.3</td>
<td>13.0</td>
<td>13.2</td>
<td>12.6</td>
</tr>
<tr>
<td>Monounsaturates</td>
<td>13</td>
<td>12.0</td>
<td>12.8</td>
<td>11.4</td>
<td>12.3</td>
</tr>
<tr>
<td>n-6 polyunsaturates</td>
<td>Minimum 1%</td>
<td>5.3</td>
<td>5.2</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>n-3 polyunsaturates</td>
<td>Minimum 0.2%</td>
<td>1.0</td>
<td>1.1</td>
<td>1.0</td>
<td>1.1</td>
</tr>
<tr>
<td>Trans fat</td>
<td><2</td>
<td>1.2</td>
<td>0.8</td>
<td>1.1</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Source: Henderson et al. (2003); SACN 2007a; Bates et al. (2010)
A number of other Government initiatives have had a direct impact on red and more particularly processed meat. The Salt Reduction Programme and more recently the Saturated Fat Campaign have urged the meat industry to reformulate red meat dishes and processed meat products. Nutrient standards and nutrient specifications in public sector catering settings, such as schools, care homes and hospitals have also driven industry reformulation programmes.

In this challenging climate the International Meat Secretariat (IMS) set up the Human Nutrition and Health Committee (HNHC) comprised of nutritionists working for the meat industry around the world. Nutrition and health issues are not viewed as a competitive issue and so working in collaboration ensures that industry defence against negative publicity can be co-ordinated and consistent messages based on sound science can be reinforced globally.

Introduction

The ongoing promotion of red and processed meat as part of a healthy balanced diet is continually being challenged by negative media coverage. Recent tracking figures suggest that pork has attracted the most negative publicity and lamb the least (Figure 1).

Figure 1. PR coverage - % of negative comments.
of someone’s diet - such as eating meat - to prove it has caused obesity. Furthermore, higher protein diets have gained popularity as a successful approach to weight loss and maintenance.

Recently there has also been an interest in the glycaemic index (GI) of foods. The GI is a measure of the way the body breaks down carbohydrates and the effect this has on blood glucose levels. Foods with a low GI are encouraged as these have a beneficial effect on managing blood glucose levels and satiation, which is particularly important in diabetes and obesity management (Brand-Miller et al., 2003). As red meat has a GI of zero, it can reduce the overall GI in a meal when combined with other foods with a higher GI.

Both satiation and satiety are part of the body’s appetite control system and are involved in limiting energy intake. Satiation is the process that causes us to stop eating; satiety is the feeling of fullness that persists after eating, suppressing further consumption and both are important in determining total energy intake.

The BNF (Benelam, 2009) recently reviewed the science in this field and concluded that overall, the characteristic of a food or drink that appears to have the most impact on satiety is its energy density. That is the amount of energy it contains per unit weight (kJ/g, kcal/g). When energy density is controlled, the macronutrient composition of foods does not appear to have a major impact on satiety. However, in practice, high-fat foods tend to have a higher energy density than high-protein or high-carbohydrate foods,