Profile

The VITAMINS Directory as been designed by **CONTEXT** to save you time searching for information and to improve your knowledge of minerals in animal nutrition is not a substitute for advice from a trained nutrition

About the Authors

Sally J. Charlton BSc (Hons) Ani Sci, Pr Sci Nat.

S ON Mrs Charlton has broad knowledge of vitamin and mineral nutrition having worked in managerial and advisory positions in the animal feed industry for the last 15 years. She was a product manager for Trouw Nutrition, a leading global manufacturer of premixes and speciality feed. She was a member of the South African Council for Natural Scientific Professions and has been a consultant animal nutritionist in South Africa and Canada over the last 7 years.

Dr Wesley Ewing BSc (Hons) Agric, Dip M, MSc, PhD.

After the international success of The FEEDS Directory, by Dr Ewing, it proved the need for further easy to use guides on animal nutrition and especially vitamins. Wesley has both a commercial and technical knowledge of animal nutrition having worked in the industry for 20 years for global leaders such as Cargill and Provimi. He was the General Manager for a UK animal nutrition and health company before establishing Context.

The VITAMINS Directory

Your simple guide to vitamins in animal nutrition

First published 2007

British Library Cataloguing in Publication Data

The VITAMINS Directory (2nd Edition) I. Charlton, S 2. Ewing, W.N.

ISBN 978-1-899043-10-1 © Context 2007

All rights reserved. No part of this publication may be reproduced, in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of the copyright holder) except in accordance with the provisions of the Copyright, Designs and Patents Act 1998. Applications for the copyright holder's written permission to reproduce any part of this publication should be addressed to the publishers. Whilst every effort has been made to ensure the contents are correct, the author and publisher cannot be held responsible for any errors or omissions contained herein.

Produced and published by Context Context Products Ltd 53 Mill Street Packington Ashby de la Zouc Leicestershire England LE65 1WN Tel: +44 (0)1530 41133 Fax: +44 (0) 1530 411289 Email: enquiries@contextproducts.co.uk www.contextbookshop.com

Disclaimer:

in

No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use of any instructions, data or ideas contained in the material herein. Because of rapid advances in genetic development, country variation and analytical differences data will vary from that listed. The authors and CONTEXT accept no liability for errors in this guide. We recommend that all data is checked from at least two other independent sources.

This is an early preview copy and some of the figures will change in the first edition.

Information on vitamins is widespread and it has not been possible to review all references. This guide is not intended to replace the many general or more specific nutritional texts currently available. Continual revision and updating i planned as new information becomes available. We would welcome your support on updating this guide. Email wewing@contextproducts.co.uk

Finally this is a colour guide. If you receive a Black and White version please report the copyright theft to us at the above address.

The Vitamins Directory

Contents

	Section
Introduction	А
History	В
Abbreviations	С
Conversions	D
Notes For Using The Directory	E
Synthetic Vitamins	G
Vitamin Summary - Names and Groups	Н
Vitamin Summary - Feed Additives	I
Vitamin Summary - Feed Additive Stability	J
Vitamin Summary - Functions	К
Vitamin Summary - Deficencies	L
Botaino	1
Riotin	7
Carnitine	2
Cholino	3
	5
Folic acid	5
	7
	, 8
Niacin	9
	10
Pangamic acid	11
Pantothonic acid	17
	12
Tormitin	14
	14
Vitamin R.	15
Vitamin P-	17
	19
Vitamin D12	20
Vitamin D	20
	22
	23
	24
Vitanini O	25

Vitamin History

In 1881, in Germany, rats and mice were fed a purified diet of fat, protein, carbohydrate, salts and water. They quickly died. When small quantities of milk were added to the diet, the animals lived longer concluding that milk contained essential active substances. In 1906, in England, 'accessory growth factors' was coined and then in 1912, the 'vitamine' "vital amine" theory was proposed by Funk, a Polish biochemist. This was a result of work on an amine responsible for beri beri. This was the first B vitamin. Initially 'vitamine' was used for a large group of essential organic compounds but later it was found that they did not always contain the amine or nitrogen-containing substances and so 'vitamin' was used thereafter. 1915, USA scientists discovered two essential growth factors, a fat-soluble factor A and a water-soluble factor B. Research during the first half of the 20th century led to the isolation of over a dozen vitamins as pure chemical substances. Vitamin B_{12} was the last vitamin discovered, in 1948. There is

Vitamin	Discovery	Isolation	Structure	Synthes
Betaine				
Biotin	1931	1935	1942	1943
Carnitine		1905	1932	
Choline	1932	1849		
Coenzyme Q 10				
Folic Acid	1941	1941	1946	1946
Inositol		1850		
Lipoic acid				
Niacin	1936	1935	1937	1949
Orotic acid			0,	
Pangamic acid				
Pantothenic acid	1931	1938	1940	1940
Rutin				
Termitin		1946	0	
Vitamin A	1909	1931	1931	1947
Beta-carotene		1831	1930	1950
Vitamin B ₁	1897	1926	1936	1936
Vitamin B ₂	1920	1933	1935	1935
Vitamin B ₆	1934	1938	1938	1939
Vitamin B ₁₂	1926	1948	1956	1972
Vitamin C	1912	1928	1933	1933
Vitamin D	1918	1932	1936	1959
Vitamin E	1922	1936	1938	1938
Vitamin F	1930			
Vitamin K	1929	1939	1939	1939
Vitamin U				

CONTEXT

Useful Terms and Abbreviations

	AF	As fed
	BW	Bodyweight
	Ca	Calcium
	Со	Cobalt
	Cu	Copper
	DM	Dry matter
	DNA	Deoxyribonucleic acid
	EFA	Essential fatty acid
	Fe	Iron
	g/tonne	Grams per tonne (=ppm)
	GSH_Px	Glutathione peroxidase
6	Hb	Haemoglobin
	IU	International unit
	1	Litre
	Mg	Magnesium
-	Mn	Manganese
	MS	Microbial synthesis
	mcg	Microgram
	MNB	Menadione nicotinamide bisulphite
	MPB	Menadione pyrimidinol bisulphite
	MR	Milk replacer
	MSB	Menadione sodium bisulphite
	mEq	Milli equivalents
	mg/kg	Milligrams per kilogram (=ppm)
	mths	Months
	NAD	Nicotinamide Adenine Dinucleotide
	NADP	Nicotinamide Adenine Dinucleotide Phosphate
	NRC	National research council
	ng/g	Nanograms per gram (=ppb)
	ng/mi	Nanograms per millilitre
	% °C	Percent
	ر °⊏	Degrees centigrade
	D	
	r nnh	Part per hillion
	nnm	Parts per million
	nnt	Parts per trillion
	PTH	Parathyroid hormone
	PUFA	Polyunsaturated fatty acid
	RNA	Ribonucleic acid
	USA	United States of America
	μq	Micrograms
	μg/g	– Micrograms per gram (=ppm)
	µg/kg	Micrograms per kilogram
	<	Less than
	>	Greater than
	Zn	Zinc

C1

	Vitamin (active substance)	Unit	Conversion Factors of Vitamin Forms
	A (retinol)	1 IU = 1 IU = 1 IU = 1 IU =	0.300 μ g vitamin A alcohol (retinol) 0.344 μ g vitamin A (retinyl) acetate 0.359 μ g vitamin A propionate 0.550 μ g vitamin A(retinyl) palmitate
	Pro vitamin A	1 IU=	0.6 μg β- carotene
	D ₃ (cholecalciferol)	1 IU =	0.025µg vitamin D ₃
	E (tocopherol)	1 IU =	1 mg dl- α -tocopheryl acetate
hny	Bio-equivalence of toco d-α-tocopherol (RRR) dl-α-tocopherol (all-rac dl-α-tocopherol (all-rac dl-β-tocopherol dl-δ-tocopherol dl-γ-tocopherol	opherols: :) e (all-rac)	= 1.49 IU/mg = 1.10 IU/mg = 1.00 IU/mg = 0.33 IU/mg = 0.25 IU/mg = 0.01 IU/mg
	K ₃ (menadione)	0.51mg = 0.45mg = 0.46mg =	1 mg MSB 1 mg MPB 1 mg MNB
	B ₁ (thiamine)	0.92mg= 0.89mg =	1 mg thiamine mononitrate 1 mg thiamine hydrochloride
	B ₆ (pyridoxine)	0.89mg =	1 mg pyridoxine hydrochloride
	Niacin	1mg = 1mg =	1 mg nicotinic acid 1 mg nicotinamide
	D-pantothenic acid	0.92mg = 0.46mg =	1 mg calcium D-pantothenate 1 mg calcium DL-pantothenate
	Choline	0.75mg =	1 mg choline chloride (basis choline ion)
		0.87mg =	1mg choline chloride (basis choline hydroxy analogue)
	L-ascorbic acid	0.89mg =	1mg sodium ascorbate
			Con

Metric Weights and Measures to Imperial

		Units From	Conversion Factor	Units To					
	Length								
		mm	x 0.04	ins					
		cm	x 0.4	ins					
		mm	x 1.1	yds					
		km	x 0.62	miles					
	Mass and Weight								
		g	x 0.03527	OZS					
		g	x 0.002205	lbs					
		kg	x 2.2046	lbs					
		g	x 0.00422	cups					
	Υ.	kg	x 4.2	cups					
		metric ton	x 1.102	short tons					
		metric ton	x 0.984	long ton					
•		metric ton	x 2204.6	lbs					
		mg/kg	x 1	ppm					
		iu/kg	x 0.454	iu/lb					
	Volume								
		ml	x 0.0338	fl.oz					
		litre	x 33.81	fl.oz					
		litre	x 2.1134	pints					
		litre dry	x 0.908	quart dry					
		litre	x 1.057	quart liquid					
		litre	x 0.2642	gallons					
		litre	x 4.166	cup					
	Capacity	y							
		cm ³	x 0.061	cubic in					
		m ³	x 35.315	cubic ft					
		m ³	x 1.308	cubic yd					
	Tempera	ature							
		°C	x (9/5)+32	°F					
		°F	-32 x (5/9)	°C					
	Energy								
		kcal/kg	x 0.454	kcal/lb					
		mcal/kg	x 0.454	mcal/lb					
		MJ/kg	x 0.24	mcal/kg					

Feed Additives - Vitamins and Provitamins

Origin

There are three main production processes for vitamins:

- Chemical synthesis
- Fermentation
- Isolation from substances of plant or animal origin

The cost of extraction from plants or animal products tends to exclude these sources from animal nutrition. The other two methods are almost exclusively used as production methods of vitamins for animal nutrition.

Whether vitamins are obtained by fermentation or chemical synthesis, they are identical to those occurring in nature, and therefore produce the same biological effects. Synthetic vitamins are sometimes superior to natural ones,

since some, e.g. bloun, main imited extent because of the nature of their comment. Chemical synthesis has been the major source of vitamin production but fermentation methods are becoming more available and preferable. Vitamin B₁₂ has a very complicated structure and is therefore almost exclusively obtained by fermentation.

This is normally based on raw materials such as crude oil or gas. These materials are split into small units, which are subsequently recombined in multi-step processes to form the desired vitamin. The synthesis of vitamin A takes more than 15 process steps.

Fermentation

Identifies and selects suitable micro-organisms capable of producing the desired vitamin. The vitamins are then separated from the fermentation broth and purified. Genetic engineering allows the productivity of the micro-organisms to be increased.

Methods of Producing Commercial Vitamins

Vitamin	Chemical Synthesis	Fermentation Biosynthesis	Plant Extraction	
ß-Carotene		+	+	
Biotin	+	+	\mathbf{D}	
Choline	+			
Folic acid	+		101	
Lipoic acid	+		0	
Niacin	+	+		
Pantothenic acid	+	+		
Vitamin A	+			
Vitamin B ₁	+			
Vitamin B ₂	+	+		
Vitamin B ₆	+			
Vitamin B ₁₂		+		
Vitamin C	+	+		
Vitamin D ₃	+		+	
Vitamin E	+	+	+	
Vitamin K	+			

Vitamin Summary

Names and Groups

	Vitamin	Synoymn	Group
	Betaine	Trimethylglycine	Vitamin like substance
	Biotin	Vitamin H	Essential vitamin
	Carnitine	Vitamin B ₇	Amine
	Choline	Gossypine	Essential
	Co enzyme Q 10	Vitamin Q Ubiquinone	Vitamin like substance
	Folic Acid	Folacin	Essential vitamin
2	Inositol	Myo-inositol	Vitamin like
	Lipoic acid	Thioctic acid	Vitamin like substance
	Niacin	Vitamin B ₃	Essential vitamin
	Orotic acid	Vitamin B ₁₃	Vitamin like substance
	Pangamic acid	Vitamin B ₁₅	Vitamin like substance
	Pantothenic acid	Vitamin B ₅	Essential vitamin
	Rutin	Vitamin P	Bioflavanoid
	Termitin	Vitamin T	Vitamin like substance
	Vitamin A	Retinol Retinal Retinoic acid	Essential vitamin
	Vitamin B ₁	Thiamin, Thiamine	Essential vitamin
	Vitamin B ₂	Riboflavin	Essential vitamin
	Vitamin B ₆	Pyridoxine	Essential vitamin
	Vitamin B ₁₂	Cobalamin	Essential vitamin
	Vitamin C	Ascorbic acid	Essential vitamin
	Vitamin D ₃	Ergocalciferol (D ₂) Cholecalciferol (D ₃)	Essential vitamin
	Vitamin E	Toocopherol	Essential vitamin
	Vitamin F	Linolenic acid Linoleic acid	Essential fatty acid
	Vitamin K ₃	Menaqunione (K ₁) Phyllaquinone(K ₂)	Essential vitamin
	Vitamin U	Cabagin	Vitamin like substance

Biotin

Vitamin Like

 Biotin can be synthesised by intestinal bacteria (caecum/colon) and micro-organisms in the rumen

CONTEXT

www.contextbookshop.com

Poor sources

· Cereals, meat, fish

	Feed Name	mg/kg DM	Feed Name	mg/kg DM
	Alfalfa dried	0.35	Oat middlings	0.24
	Bakery byproduct	0.07	Palm kernel ext. solv	
	Barley grain	0.15	Peas	0.22
	Bean field	0.11	Potato dried	0.11
	Blood meal	0.09	Rape ext (mech)	1
	Brewers dried grains	0.65	Rice	0.1
	Buckwheat grain	0.07	Rice bran	0.44
	Buttermilk dehyd.(cattle)	0.32	Rye grain	0.07
	Cabbage/brasicas		Safflower ext. solv.	1.5
6.0	Carrots	0.07	Sesame ext mech	0.33
	Casein dehdy. (cattle)	0.05	Silage grass	
	Cassava tubers dehy		Silage lucerne	
	Citrus pulp dried		Silage maize	
-	Copra(coconut) meal (mech ext)	0.11	Sorghum grain	0.26
	Cottonseed meal 41 (mech ext)	0.95	Soya hipro 48	0.38
	Cottonseed meal 41 (solv ext)	0.6	Soybean meal	0.35
	Distillers grains - barley	0.25	Straw barley	
	Distillers grains - maize	0.5	Straw oat	
	Distillers grains - wheat		Straw wheat	
	Fishmeal (white)	0.08	Sugar beet pulp (dehyd)	
	Grass	0.25	Sugar beet pulp (mol)	
	Grassmeal	0.2	Sunflower ext. solv.	1.6
	Groundnut ext. mech	0.35	Таріоса	0.03
	Hay alfalfa	0.18	Triticale grain	0.06
	Hay grass	0.06	Wheat bran	0.3
	Hominy feed	0.14	Wheat feed	0.12
	Linseed meal (mech ext)	0.37	Wheat germ ext. mech.	0.25
	Lupin seed meal	0.45	Wheat germ feed	5
	Maize (yellow)	0.08	Wheat grain	0.14
	Maize germ ext. sol.	0.26	Whey low lactose dried 🔶	0.53
	Maize gluten 20	0.19	Whey (cattle dehyd)	0.35
	Maize gluten 60	0.22	Yeast (brewers dehyd)	1.2
	Malt culms		Yeast (torula dehyd)	1.4
	Meat and bone	0.1		
	Meat meal	0.05		
	Milk (cattle-dehyd)	0.38		
	Milk skimmed	0.32		
	Millet grain	0.18		
	Molasses - beet	0.1		
	Molasses - cane	0.9		
	Oat grain	0.23		
	Oat groats	0.22		

www.contextbookshop.com

Carnitine

Vitamin Like

Required for movement of fatty

acids within and between cells

Important in production of energy

- Growth rates improved with lower-energy diets and feed

Benefits

Weanling pigs

CONTEXT

www.contextbookshop.com

Important in regulation of liver and

conversion improved with added-

fat diets, May have effect on back-

blood acetate levels

fat thickness

Coenzyme Q10

	Vitamin Like	
	H _c o H _c O H H _c O H _c	Chemical Formula C59H90O4 Molecular Weight 863.34 g/mol
	 Introduction Found in most living cells concentrated in the mitochondria A lipid-like compound chemically similar to vitamin E 	• Synthesised in cells so not considered a true vitamin
	 Key Natural Sources Occurs in aerobic organisms, from bacteria to higher plants and animals 	
	 Function Involved in production of ATP (cell energy source) A coenzyme for several cellular enzymes An electron carrier between flavoproteins and cytochromes 	 May have a role in antibody production Antioxidant
	 Benefits ATP drives muscle contraction, production of protein etc May have beneficial effects in some disease states e.g. muscular dystrophy, periodontal disease, congestive heart failure, hypertension 	 May enhance immune response mechanisms to disease or parasite challenge Possible tole in prevention of some of symptoms of vitamin E deficiency
	 Metabolism Plants and micro-organisms can synthesise ubiquinones Synthesised in the body from amino acid tyrosine 	 Q-10 found in hen eggs Q-10 can pass across placenta to foetus
	Storage • Found in liver, kidney and intestinal mucosa cells	°0
	Requirement/Allowance • No dietary requirements established	
	• Non reported	
	• Non reported	
	C	

Synergy • Vitamin A, vitamin E, pantothenic acid

Inosito

Vitamin Like

- Reduce blood cholesterol
- Protects heart

CONTEXT

 Necessary for normal brain cell function

Niacin

Essential Vitamin

Orotic Acid

Vitamin Like

Young calves and heifers

CONTEXT

• Stimulates growth when combined with methionine

Chicks and piglets

 May stimulate growth under certain conditions

www.contextbookshop.com

Pantothenic Acid

Essential Vitamin

Benefits

- Promotes performance
- Boosts the nervous system
- Necessary for adrenal gland health and function
- Integrity of skin and mucous membranes

Absorption

- Bound forms digested to release pantothenic acid
- transported in the blood plas.. the tissues Most used for re-synthesis of CoA Some found in cells bound to a reatein (acyl carrier protein) Absorbed primarily in small

- Transported in the blood plasma to the tissues

- Storage
- No appreciable stores
- Higher concentration found in and kidney

Excretion

- Major route via kidneys
- Urinary excretion is prompt whe taken in excess

 Adult ruminants, with normal functioning rumen, can produce their own pantothenic acid through microbial synthesis. (High ratio of forage to starchy

concentrates reduces level of

pantothenic acid)

· Required for egg production and

• Important in the animals health

Increased resistance to pathogens

Absorption is saturable and sodium

stored in the yolk)

ion dependant

hatchability (Approximately 80% is

- Some is oxidised and excreted
- across the lungs as carbon dioxide

Requirement/Allowance (Pantothenic Acid mg/kg diet DM)							
Rums	NRC	Pigs	NRC	Poultry	NRC	Others	NRC
Calf (MR)	13	Creep	11-13.3	Chick	11	Dog ^z	200-400
Beef	MS	Grower	8.8	Breeder	10	Horse	MS
Sheep	MS	Sow/Boar	13.3	Turkey	10-11	Rabbit	15-50
Rums	Typical	Pigs	Typical	Poultry	Typical	Others	Typical
Calf (MR) Dairy Beef	20	Creep Weaner Grower	23 20 20	Chick Broiler Breeder	16/11 12.5 15	Dog Cat Horse	20 14 5
Heifer Sheep ^a	12.5	Finisher Sow/Boar	12 18	Layer Turkey	10 12-20	Fish Rabbit	45 14
<u>Notes</u> a _{ewe/lamb}				² µg∕kg B'	W		

Animal Status:

• Egg contains approximately 800mg/60g egg (90% in yolk)

www.contextbookshop.com

Rutin

Vitamin Like

CONTEXT

www.contextbookshop.com

Benefits

- Helps maintain normal vision (prevents night blindness)
- Maintains surface skin layers and mucous membranes
- Essential for growth and reproduction
- Essential for optimum immune system

Absorption

- Feeds supply vitamin A, vitamin A esters and carotenes
- Released from protein by pepsin in
- Released from protein by pepsistomach and enzymes in small intestine
 Bile salts in small intestine (duodenum) break up fatty glob for enzymatic digestion
 Absorption occurs in small intestines (main site is jejunum) (duodenum) break up fatty globules

 - intestines (main site is jejunum)

Metabolism

- Conversion of B-carotene to vitamin A occurs in the intestinal wall and also in the liver
- Conversion involves two enzymes for conversion to retinal and then retinol
- Conversion rates and carotene utilisation efficiency varies according to source and species. e.g. Holstein cattle are more efficient converters than Guernsey and Jersey breeds, hence whiter milk and fatty tissues
- Cats are unable to convert carotenoids to retinal because they lack the enzyme

Storage

- Occurs mainly as retinyl palmitate, in liver (90%) but also kidneys, body fat and lungs
- Dogs and cats store higher level in kidney as well as liver

- · Helps improve ovulation and implantation of the ovum, embryonic and foetal development and hormone activation for pregnancy
- Absorption affected by bile, dietary fat, protein levels and antioxidants
- Vitamin A absorption 80-90%
- B-Carotene absorption 50-60% • In pig, goat, sheep, rabbit, buffalo and dog, vitamin A itself is mainly absorbed
- Cattle, horses and carp-carotene can also be absorbed in large amounts
- Fish can convert carotenoids, astaxanthin and cantaxanthin to Vitamin A dependant on vitamin A status
- In the blood, carotenoids are associated with lipid binding protein and vitamin A esters are transported with retinol binding protein (RBP)
- Secretion of RBP from liver is
- regulated by oestrogen, vitamin A, protein and zinc status Metabolism, storage and release of vitamin A by liver are under
- homeostatic controls Transfer across placenta is marginal
- Reserves are easily mobilised and useful during periods of dietary inadequacy
- Infection can deplete stores
- Mammals born with low liver stores
- Retinol readily transferred to eggs

Excretion

Via faeces

	Feed Name mg/kg DM		Feed Name	mg/kg DM
	Alfalfa dried	175	Oat middlings	
	Bakery byproduct	4.9	Palm kernel ext. solv	
	Barley grain	2.2	Peas	1
	Bean field		Potato dried	
	Blood meal		Rape ext (mech)	<1
	Brewers dried grains	0.5	Rice	0.35
	Buckwheat grain		Rice bran	
	Buttermilk dehyd.(cattle)		Rye grain	0.11
	Cabbage/brasicas	175	Safflower ext. solv.	
6.9	Carrots	750	Sesame ext mech	0.44
	Casein dehdy. (cattle)		Silage grass	100
	Cassava tubers dehy		Silage lucerne	40
	Citrus pulp dried	10	Silage maize	20
	Copra(coconut) meal (mech ext)	0.5	Sorghum grain	0.9
	Cottonseed meal 41 (mech ext)	0.27	Soya hipro 48	
	Cottonseed meal 41 (solv ext)		Soybean meal	0.22
	Distillers grains - barley		Straw barley	2.2
	Distillers grains - maize	3.0	Straw oat	4
	Distillers grains - wheat	1.1	Straw wheat	2
	Fishmeal (white)		Sugar beet pulp (dehyd)	0.3
	Grass	250	Sugar beet pulp (mol)	0.2
	Grassmeal	200	Sunflower ext. solv.	2.5
	Groundnut ext. mech	0.32	Таріоса	<1
	Hay alfalfa	55	Triticale grain	<1
	Hay grass	22.5	Wheat bran	3
	Hominy feed	10	Wheat feed	35
	Linseed meal (mech ext)	0.2	Wheat germ ext. mech.	3
	Lupin seed meal		Wheat germ feed	
	Maize (yellow)	3.2	Wheat grain	0.3
	Maize germ ext. sol.	2.2	Whey low lactose dried	
	Maize gluten 20	3.5	Whey (cattle dehvd)	
	Maize gluten 60	15.5	Yeast (brewers dehvd)	
	Malt culms		Yeast (torula dehvd)	<1
	Meat and bone			
	Meat meal			
	Milk (cattle-dehvd)			
	Milk skimmed			
	Millet grain	0.55		
	Molasses - beet	<1	L	
	Molasses - cane			
	Oat grain	22	[
	Oat gran	2.3		
	Jac givas			

www.contextbookshop.com

Deficiency

General

- Nervous disorders
- Cardiovascular disturbances
- Loss of appetite, anorexia
- Poor growth and development
- Muscle weakness and cramp
- Paralysis
- Gastrointestinal problems
- Easily fatigued
- Hyper-irritability

Type:
Ruminants
(Rumen not fully developed or from thiaminase activity in the rumen)
Poor leg coordination
Inability to stand
Retraction of head
Tachycardia
Anorexia
Weight loss

- Weakness
- Severe diarrhoea
- Polioencephalomalacia (PEM)
- Cerebrocorticonecrosis, forage poisoning, circling disease)

Pigs

- Anorexia
- Weight loss
- Vomiting
- Diarrhoea
- Haemorrhages
- Hypothermia
- Premature births
- High mortality among young
- Heart failure
- Tachycardia
- Sudden death

Poultry

- Chicks: - polyneuritis (retraction of head)
- Appetite loss
- Emaciation
- Impaired digestion
- Weakness
- Stargazing
- (paralysis of neck muscles)
- Convulsions
- Hypothermia
- Embryo mortality

CONTEXT

• Chicks hatch with polyneuritis

Toxicity

- No known toxic effects
- Safe upper dietary level suggested of 1000 times requirement (NRC 1987)

Dogs

- Anorexia
- Weight loss
- Weakness
- Slow pulse
- Cramps
- Gastrointestinal disorders
- Hypothermia

Horses

(Usually from thiaminase-containing plants, e.g. bracken fern)

- Anorexia
- Weight loss
- Lustreless coat
- Heart failure
- Nervousness
- Muscle tremors
- Incoordination
- Diarrhoea
- Constipation
- Reproductive failure

- i) Neu ...

www.contextbookshop.com

Vitamin B₆

Essential Vitamin

Bioavailability

CONTEXT

• Typical levels maize 38-45% and soyabean meal 58-65%

	Requirement/Allowance (µg per kg of diet DM)									
	Rums	NRC	Pigs	NRC	Poultry	NRC	Others	NRC		
	Calf (MR) Dairy Beef Heifer Sheep	70 MS MS MS MS	Creep Weaner Grower Finisher Sow/Boar	19.5-22 16.6 11 5.5 16.6	Chick Broiler Breeder Layer Turkey	11/10 7.7-11 3.3 3.3 3.3	Dog ^z Cat Horse Fish Rabbit	0.5-1.0 20 MS 10		
	Rums	Typical	Pigs	Typical	Poultry	Typical	Others	Typical		
h	Calf (MR) Dairy ^a Beef Heifer Sheep	35-80 15-30 20	Creep Weaner Grower Finisher Sow/Boar	55 45 35 20 30	Chick Broiler Breeder Layer Turkey	30 25 35 23 30	Dog Cat Horse Fish Rabbit	40 40 15 45 17.5		
	Notes Z μg/kg BW a Requirements to meet production z μg/kg BW levels of high genetic merit animals, particularly in early									

^a Requirements to meet production levels of high genetic merit animals, particularly in early lactation

Requirement Affected by

- Protein
- Choline

- Methionine and folacin levels in diet
- Performance level

Animal Status

• Egg contains approximately 0.5mg/60g egg (95% in yolk)

Deficiency General

- Loss of appetite
- Growth disorders
- Poor feed conversion
- Anaemia
- Poor coat condition
- Ill thrift and Pine
- Rough skin inflammation
- Nervous disorders
 - e.g. uncoordinated movements

Ruminants

- Young ruminants:
- Poor appetite and growth
- Muscular weakness
- Demyelination of nerves
- Poor condition
- Adults:
- Reduction in milk and protein yield

Pigs

- See general and
- Unco-ordinated hind leg movement
- Increased excitability
- Atrophy of thymus and spleen
- Enlarged liver and tongue
- Litter size and pig survival reduced
- Reproductive failure in sows

Poultry

- See general and
- Poor feathering
- Leg weakness
- Gizzard erosion
- Fatty heart, liver and kidney
- Reduced hatchability and egg size
- Increased embryo and post hatch mortality

Dogs

- Reduced growth
- Impaired reproduction
- Some dogs inherit an intestinal vitamin B₁₂ malabsorption disorder

Horses

- Not recorded
- Sufficient synthesis in large intestine, where it is absorbed

www.contextbookshop.com

Vitamin C

Essential Vitamin

Vitamin D

Essential Vitamin

21a

Absoprtion

• EFA's absorbed in the intestines

Metabolism

- Monogastrics Fatty acid composition of body fat related to dietary fatty acid composition
- Ruminants
- Rumen micro organisms result in more saturated body fat

	Requirement/Allowance Linoleic acid (g/kg diet DM)									
	Rums	NRC	Pigs	NRC	Poultry	NRC	Others	NRC		
	Calf (MF	R)	Creep		Chick	11	Dog	11		
	Dairy		Weaner		Broiler	11	Cat	5.5		
	Beef Heifer Sheep		Grower Finisher Sow/Boar		Breeder	11	Horse	5.5		
					Layer	11-15.5	Fish *	11		
					Turkey	8.8-11	Rabbit			
	Rums	Typical	Pigs	Typical	Poultry	Typical	Others	Typical		
	Calf (MF	R) 16.6	Creep	22	Chick	13.8	Dog	11		
•	Dairy		Weaner	16.6	Broiler	5.5-8.8	Cat	11		
	Beef		Grower	16.6	Breeder	15.5	Horse	5.5		
	Heifer		Finisher	8.8	Layer	13.3	Fish *	11		
	Sheep		Sow/Boar	7.7#	Turkey	6.6-13.8	Rabbit	11		
	Notes									
	* Also a	ndd 10g/kg) linolenic a	acid	# Also add 5.5g/kg arachadonic acid					
	• Age									
	• Dietary	fat			• Sex					

- Hormone balance Growth rate

Deficiency

- Monogastrics
- Reduced growth rate • Dermatitis and necrosis of skin
- Loss of hair
- Reduced cell membrane strength
- Cholesterol build-up in cells
- Reduced prostaglandin production

Toxicity

- Reduced appetite
- Produce oily carcasses
- Greasy faeces

Antagonists

Peroxides, Copper

Feed Additive/Supplement

- Omega-3 essential unsaturated
- fatty acids

```
Physical Form and Texture

    Colourless oil liquid at room temp
```

Storage and Handling Stable to

CONTEXT

Heat

www.contextbookshop.com

• Temperature (for fish)

- Fatty livers can develop in poultry
- Disturbed water balance (e.g. increased water intake and retention)
- Impaired reproduction
- Reduced resistance to infection
 Reduced metabolic function and efficiency
- Induced vitamin E deficiency (Vitamin E supply must match supply - 3mg/g PUFA)

Synergy

- Selenium, Vitamin E, Vitamin B₆
- Omega-6 essential unsaturated fatty acids
- Linoleic acid melts at -12°C
- Arachidonic acid melts at 49.5°

Requirements Affected by

- Dietary components
- Age
- Sex
- Strain
- Antagonists

Animal Status

 Egg contains approximately 0.02mg/60g egg in yolk

Deficiency

- Blood coagulation disorders
 Haemorrhages in various tissues

Genc. • Blood coaguie. • Haemorrhages in varioe. and organs • Prolonged blood clotting time • Anaemia • Death in severe cases • mesence of meta marol c • Can occur in presence of metabolic antagonists, e.g. dicoumarol or poisoning

Pigs

• Can occur from poor diet, antagonists, low coprophagy, breed, increased litter size and rate of gain may increase need

Toxicity

- Natural forms are non toxic
- Synthetic forms have shown toxicity in rats, humans, rabbits, dogs and mice leading to anaemia, renal failure, death

Antagonists

- Dicoumarol (produced by moulds from coumarins found naturally in sweet clover)
- Dicourmarol is used commercially in Warfarin, a rodent poison
- Mycotoxin, aflatoxin (toxic substance produced by moulds)

Synergy

• Vitamin K₁ absorption stimulated by oestrogen

Feed Additives/Supplements (Vitamin K₃)

- Menadione sodium bisulphite (MSB) = 50% Menadione
- Menadione dimethylpyrimidinol bisulphite (MPB) = 45.4% Menadione)
- Menadione sodium bisulphite complex (MSBC) = 33% Menadione

CONTEXT

- Disease
- Conditions affecting fat absorption or intestinal flora
- Rate of passage though intestines (diarrhoea)

Poultry

- Gizard erosion
- Increased bruising
- Embryo mortality
- Poor hatchability
- Egg quality
- Impaired eggshell formation

Dogs

Rarely seen unless from poisoning

Horses

- Rare when on pasture or goodquality hay
- Safe upper dietary level suggested for Vitamin K3 of 1000 times requirement
- Certain antibiotics and sulphonamides
- Coccidiosis increases vitamin requirements
- Excessive vitamin A and calcium

 Menadione nicotinamide bisulphite (MNB) = 23% or 43% menadione and 16% or 31% nicotinamide

www.contextbookshop.com